

Welcome to redis-py-cluster’s documentation!

This project is a port of redis-rb-cluster by antirez, with a lot of added functionality.

The original source can be found at https://github.com/antirez/redis-rb-cluster.

The source code for this project is available on github [http://github.com/grokzen/redis-py-cluster].

Installation

Latest stable release from pypi

$ pip install redis-py-cluster

or from source code

$ python setup.py install

Basic usage example

Small sample script that shows how to get started with RedisCluster. It can also be found in the file exmaples/basic.py.

Additional code examples of more advance functionality can be found in the examples/ folder in the source code git repo.

>>> from rediscluster import RedisCluster

>>> # Requires at least one node for cluster discovery. Multiple nodes is recommended.
>>> startup_nodes = [{"host": "127.0.0.1", "port": "7000"}]

>>> # Note: See note on Python 3 for decode_responses behaviour
>>> rc = RedisCluster(startup_nodes=startup_nodes, decode_responses=True)

>>> rc.set("foo", "bar")
True
>>> print(rc.get("foo"))
'bar'

Note

Python 3

Since Python 3 changed to Unicode strings from Python 2’s ASCII, the return type of most commands will be binary strings,
unless the class is instantiated with the option decode_responses=True.

In this case, the responses will be Python 3 strings (Unicode).

For the init argument decode_responses, when set to False, redis-py-cluster will not attempt to decode the responses it receives.

In Python 3, this means the responses will be of type bytes. In Python 2, they will be native strings (str).

If decode_responses is set to True, for Python 3 responses will be str, for Python 2 they will be unicode.

Library Dependencies

Even if the goal is to support all major versions of redis-py in the 3.x.x track, this is not a guarantee that all versions will work.

It is always recommended to use the latest version of the dependencies of this project.

	Redis-py: ‘redis>=3.0.0,<4.0.0’ is required in this major version of this cluster lib.

	Optional Python: hiredis >= 0.2.0. Older versions might work but is not tested.

	A working Redis cluster based on version >=3.0.0 is required.

Supported python versions

Python versions should follow the same supported python versions as specificed by the upstream package redis-py, based on what major version(s) that is specified.

If this library supports more then one major version line of redis-py, then the supported python versions must include the set of supported python versions by all major version lines.

	2.7

	3.5

	3.6

	3.7

	3.8

Python 2 Compatibility Note

This library follows the announced change from our upstream package redis-py. Due to this,
we will follow the same python 2.7 deprecation timeline as stated in there.

redis-py-cluster 2.1.x will be the last major version release that supports Python 2.7.
The 2.1.x line will continue to get bug fixes and security patches that
support Python 2 until August 1, 2020. redis-py-cluster 3.0.x will be the next major
version and will require Python 3.5+.

Regarding duplicate package name on pypi

It has been found that the python module name that is used in this library (rediscluster) is already shared with a similar but older project.

This lib will NOT change the naming of the module to something else to prevent collisions between the libs.

My reasoning for this is the following

	Changing the namespace is a major task and probably should only be done in a complete rewrite of the lib, or if the lib had plans for a version 2.0.0 where this kind of backwards incompatibility could be introduced.

	This project is more up to date, the last merged PR in the other project was 3 years ago.

	This project is aimed for implement support for the cluster support in 3.0+, the other lib do not have that right now, but they implement almost the same cluster solution as the 3.0+ but in much more in the client side.

	The 2 libs is not compatible to be run at the same time even if the name would not collide. It is not recommended to run both in the same python interpreter.

An issue has been raised in each repository to have tracking of the problem.

redis-py-cluster: https://github.com/Grokzen/redis-py-cluster/issues/150

rediscluster: https://github.com/salimane/rediscluster-py/issues/11

The Usage Guide

Usage guide

	RedisCluster client configuration options
	Host port remapping

	Implemented redis commands in RedisCluster
	Cluster

	Connection

	Geo

	Hashes

	Hyperloglog

	Keys/Generic

	Lists

	PubSub

	Scripting

	Server

	Sets

	Sorted Sets

	Streams

	Strings

	Transactions

	Sentinel

	Limitations and differences

	Pipelines
	How pipelining works

	Connection Error handling

	The philosophy on pipelines

	Packing Commands

	Parallel execution of pipeline

	Transactions and WATCH

	MULTI/EXEC cluster test code

	Different pipeline solutions

	Pubsub
	Scalability issues

	How pubsub works in RedisCluster

	Known limitations with pubsub

	Other solutions

	Readonly mode

	Setup client logging

Setup and performance

	Redis cluster setup
	Manually

	Docker

	Vagrant

	Simple makefile

	Benchmarks
	Setup benchmarks

	Implemented benchmarks

	Run predefined benchmarks

The Community Guide

Community Guide

	Project status

	Testing
	Tox - Multi environment testing

	Development
	Documentation

	Upgrading redis-py-cluster
	2.0.0 –> 2.1.0

	1.3.x –> 2.0.0

	1.3.2 –> Next Release

	1.3.1 –> 1.3.2

	1.3.0 –> 1.3.1

	1.2.0 –> Next release

	1.1.0 –> 1.2.0

	1.0.0 –> 1.1.0

	0.2.0 –> 0.3.0

	0.1.0 –> 0.2.0

	Release Notes
	2.1.0 (May **, 2020)

	2.0.0 (Aug 12, 2019)

	1.3.6 (Nov 16, 2018)

	1.3.5 (July 22, 2018)

	1.3.4 (Mar 5, 2017)

	1.3.3 (Dec 15, 2016)

	1.3.2 (Nov 27, 2016)

	1.3.1 (Oct 13, 2016)

	1.3.0 (Sep 11, 2016)

	1.2.0 (Apr 09, 2016)

	1.1.0 (Oct 27, 2015)

	1.0.0 (Jun 10, 2015)

	0.3.0 (Jun 9, 2015)

	0.2.0 (Dec 26, 2014)

	0.1.0 (Sep 29, 2014)

	Project Authors

	Licensing

	Disclaimer

RedisCluster client configuration options

This chapter will describe all the configuration options and flags that can be sent into the RedisCluster class instance.

Each option will be described in a seperate topic to describe how it works and what it does. This will only describe any options that does anything else when compared to the options that redis-py already provides, or new options that is cluster specific. To find out what options redis-py provides please consult the documentation and/or git repo for that project.

Host port remapping

This option exists to enable the client to fix a problem where the redis-server internally tracks a different ip:port compared to what your clients would like to connect to.

A simple example to describe this problem is if you start a redis cluster through docker on your local machine. If we assume that you start the docker image grokzen/redis-cluster,
when the redis cluster is initialized it will track the docker network IP for each node in the cluster.

For example this could be 172.18.0.2. The problem is that a client that runs outside on your local machine will receive from the redis cluster that each node is reachable on the ip 172.18.0.2.
But in some cases this IP is not available on your host system.To solve this we need a remapping table where we can tell this client that if you get back from your cluster 172.18.0.2 then your should remap it to localhost instead.
When the client does this it can now connect and reach all nodes in your cluster.

Remapping works off a rules list. Each rule is a dictionary of the form shown below

Remapping properties:

	This host_port_remap feature will not work on the startup_nodes so you still need to put in a valid and reachable set of startup nodes.

	The remapping logic treats host_port_remap list as a “rules list” and only the first matching remapping entry will be applied

	A remapping rule may contain just host or just port mapping, but both sides of the maping(i.e. from_host and to_host or from_port and to_port) are required for either

	If both from_host and from_port are specified, then both will be used to decide if a remapping rule applies

Examples of valid rules:

{'from_host': "1.2.3.4", 'from_port': 1000, 'to_host': "2.2.2.2", 'to_port': 2000}

{'from_host': "1.1.1.1", 'to_host': "127.0.0.1"}

{'from_port': 1000, 'to_port': 2000}

Example scripts:

from rediscluster import RedisCluster

startup_nodes = [{"host": "127.0.0.1", "port": "7000"}]

rc = RedisCluster(
 startup_nodes=startup_nodes,
 decode_responses=True,
 host_port_remap=[
 {
 'from_host': '172.18.0.2',
 'from_port': 7000,
 'to_host': 'localhost',
 'to_port': 7000,
 },
 {
 'from_host': '172.22.0.1',
 'from_port': 7000,
 'to_host': 'localhost',
 'to_port': 7000,
 },
]
)

Debug output to show the client config/setup after client has been initialized.
It should point to localhost:7000 for those nodes.
print(rc.connection_pool.nodes.nodes)

Test the client that it can still send and recieve data from the nodes after the remap has been done
print(rc.set('foo', 'bar'))

This feature is also useful in cases such as when one is trying to access AWS ElastiCache cluster secured by Stunnel (https://www.stunnel.org/)

from rediscluster import RedisCluster

startup_nodes = [
 {"host": "127.0.0.1", "port": "17000"},
 {"host": "127.0.0.1", "port": "17001"},
 {"host": "127.0.0.1", "port": "17002"},
 {"host": "127.0.0.1", "port": "17003"},
 {"host": "127.0.0.1", "port": "17004"},
 {"host": "127.0.0.1", "port": "17005"}
]

host_port_remap=[
 {'from_host': '41.1.3.1', 'from_port': 6379, 'to_host': '127.0.0.1', 'to_port': 17000},
 {'from_host': '41.1.3.5', 'from_port': 6379, 'to_host': '127.0.0.1', 'to_port': 17001},
 {'from_host': '41.1.4.2', 'from_port': 6379, 'to_host': '127.0.0.1', 'to_port': 17002},
 {'from_host': '50.0.1.7', 'from_port': 6379, 'to_host': '127.0.0.1', 'to_port': 17003},
 {'from_host': '50.0.7.3', 'from_port': 6379, 'to_host': '127.0.0.1', 'to_port': 17004},
 {'from_host': '32.0.1.1', 'from_port': 6379, 'to_host': '127.0.0.1', 'to_port': 17005}
]

Note: decode_responses must be set to True when used with python3
rc = RedisCluster(
 startup_nodes=startup_nodes,
 host_port_remap=host_port_remap,
 decode_responses=True,
 ssl=True,
 ssl_cert_reqs=None,
 # Needed for Elasticache Clusters
 skip_full_coverage_check=True)

print(rc.connection_pool.nodes.nodes)
print(rc.ping())
print(rc.set('foo', 'bar'))
print(rc.get('foo'))

Implemented redis commands in RedisCluster

This document will enumerate and describe all implemented redis commands and if there is any cluster specific customization/changes done to the command to make them work for a cluster workload.

If a command is specified here but there is no comments on it, then you can assume it will work and behave the same way as when using it from redis-py.

If a new command has been added to redis-server and it is not documented here then please open a issue on github telling that it is missing and needs to be added to this documentation.

Danger

If a command below begins with [NYV] / Not Yet Verified it means that the command is documented here but it is not yet verified that it works or is properly implemented or decided what implementation to use in a clustered environment.

Cluster

https://redis.io/commands#cluster

	CLUSTER ADDSLOTS slot [slot …]

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	[NYV] - CLUSTER BUMPEPOCH

	CLUSTER COUNT_FAILURE-REPORTS node-id

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER COUNTKEYSINSLOT slot

Note

Client will route command to node that owns the slot

	CLUSTER DELSLOTS slot [slot …]

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER FAILOVER [FORCE|TAKEOVER]

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	[NYV] - CLUSTER FLUSHSLOTS

	[NYV] - CLUSTER FORGET node-id

	CLUSTER GETKEYSINSLOT slot count

Note

Client will route command to node that owns the slot

	CLUSTER INFO

Note

Command is sent to all nodes in the cluster.

Result is merged into a single dict with node as key.

	CLUSTER KEYSLOT key

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER MEET ip port

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	[NYV] - CLUSTER MYID

	CLUSTER NODES

Note

Command will be sent to random node in the cluster as the data should be the same on all nodes in a stable/working cluster

	CLUSTER REPLICATE node-id

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER RESET [HARD|SOFT]

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER SAVECONFIG

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER SET-CONFIG-EPOCH config-epoch

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER SETSLOT slot IMPORTING|MIGRATING|STABLE|NODE [node-id]

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	CLUSTER SLAVES node-id

Note

Client has custom implementation where the user has to route the command to the correct node manually.

	[NYV] - CLUSTER REPLICAS node-id

	CLUSTER SLOTS

Note

Command will be sent to random node in the cluster as the data should be the same on all nodes in a stable/working cluster

	[NYV] - READONLY

	[NYV] - READWRITE

Connection

https://redis.io/commands#connection

	[NYV] - AUTH [username] password

	[NYV] - CLIENT CACHING YES|NO

	CLIENT ID

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	CLIENT KILL [ip:port] [ID client-id] [TYPE normal|master|slave|pubsub] [USER username] [ADDR ip:port] [SKIPME yes/no]

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	CLIENT LIST [TYPE normal|master|replica|pubsub]

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	CLIENT GETNAME

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	[NYV] - CLIENT GETREDIR

	[NYV] - CLIENT PAUSE timeout

	[NYV] - CLIENT REPLY ON|OFF|SKIP

	[NYV] - CLIENT SETNAME connection-name

	[NYV] - CLIENT TRACKING ON|OFF [REDIRECT client-id] [PREFIX prefix [PREFIX prefix …]] [BCAST] [OPTIN] [OPTOUT] [NOLOOP]

	[NYV] - CLIENT UNBLOCK client-id [TIMEOUT|ERROR]

	ECHO message

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	[NYV] - HELLO protover [AUTH username password] [SETNAME clientname]

	PING [message]

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	[NYV] - QUIT

	[NYV] - SELECT index

Geo

https://redis.io/commands#geo

	[NYV] - GEOADD key longitude latitude member [longitude latitude member …]

	[NYV] - GEOHASH key member [member …]

	[NYV] - GEOPOS key member [member …]

	[NYV] - GEODIST key member1 member2 [m|km|ft|mi]

	[NYV] - GEORADIUS key longitude latitude radius m|km|ft|mi [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count] [ASC|DESC] [STORE key] [STOREDIST key]

	[NYV] - GEORADIUSBYMEMBER key member radius m|km|ft|mi [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count] [ASC|DESC] [STORE key] [STOREDIST key]

Hashes

https://redis.io/commands#hash

	HDEL key field [field …]

	HEXISTS key field

	HGET key field

	HGETALL key

	HINCRBY key field increment

	HINCRBYFLOAT key field increment

	HKEYS key

	HLEN key

	HMGET key field [field …]

	HMSET key field value [field value …]

	HSET key field value [field value …]

	HSETNX key field value

	HSTRLEN key field

	HVALS key

	HSCAN key cursor [MATCH pattern] [COUNT count]

Note

HSCAN command has currently a buggy client side implementation.

It is not recommended to use any *SCAN methods.

Hyperloglog

https://redis.io/commands#hyperloglog

	[NYV] - PFADD key element [element …]

	[NYV] - PFCOUNT key [key …]

	[NYV] - PFMERGE destkey sourcekey [sourcekey …]

Keys/Generic

https://redis.io/commands#generic

	DEL key [key …]

Note

Method has a custom client side implementation.

Command is no longer atomic.

DEL command is sent for each individual key to redis-server.

	DUMP key

	[NYV] - EXISTS key [key …]

	EXPIRE key seconds

	EXPIREAT key timestamp

	[NYV] - KEYS pattern

	[NYV] - MIGRATE host port key|”” destination-db timeout [COPY] [REPLACE] [AUTH password] [AUTH2 username password] [KEYS key [key …]]

	MOVE key db

Note

Concept of databases do not exists in a cluter

	OBJECT subcommand [arguments [arguments …]]

Note

Command is blocked from executing in the client.

	PERSIST key

	PEXPIRE key milliseconds

	PEXPIREAT key milliseconds-timestamp

	PTTL key

	RANDOMKEY

	RENAME key newkey

Note

Method has a custom client side implementation.

Command is no longer atomic.

If the slots is the same RENAME will be sent to that shard.
If the source and destination keys have different slots then a dump (old key/slot) -> restore (new key/slot) -> delete (old key) will be performed.

	RENAMENX key newkey

Note

Method has a custom client side implementation.

Command is no longer atomic.

Method will check if key exists and if it does it uses the custom RENAME implementation mentioned above.

	[NYV] - RESTORE key ttl serialized-value [REPLACE] [ABSTTL] [IDLETIME seconds] [FREQ frequency]

	SORT key [BY pattern] [LIMIT offset count] [GET pattern [GET pattern …]] [ASC|DESC] [ALPHA] [STORE destination]

Note

SORT command will only work on the most basic sorting of lists.

Any additional arguments or more complex sorts can’t get guaranteed to work if working with cross slots.

Command works if all used keys is in same slot.

	[NYV] - TOUCH key [key …]

	TTL key

	TYPE key

	[NYV] - UNLINK key [key …]

	[NYV] - WAIT numreplicas timeout

	[NYV] - SCAN cursor [MATCH pattern] [COUNT count] [TYPE type]

Note

SCAN command has currently a buggy client side implementation.

It is not recommended to use any *SCAN methods.

Lists

https://redis.io/commands#list

	[NYV] - BLPOP key [key …] timeout

	[NYV] - BRPOP key [key …] timeout

	[NYV] - BRPOPLPUSH source destination timeout

	[NYV] - LINDEX key index

	[NYV] - LINSERT key BEFORE|AFTER pivot element

	[NYV] - LLEN key

	[NYV] - LPOP key

	[NYV] - LPOS key element [RANK rank] [COUNT num-matches] [MAXLEN len]

	[NYV] - LPUSH key element [element …]

	[NYV] - LPUSHX key element [element …]

	[NYV] - LRANGE key start stop

	[NYV] - LREM key count element

	[NYV] - LSET key index element

	[NYV] - LTRIM key start stop

	[NYV] - RPOP key

	[NYV] - RPOPLPUSH source destination

	[NYV] - RPUSH key element [element …]

	[NYV] - RPUSHX key element [element …]

PubSub

https://redis.io/commands#pubsub

Warning

All pubsub commands is possible to execute and be routed to correct node when used.

But in general pubsub solution should NOT be used inside a clustered environment unless you really know what you are doing.

Please read the documentation section about pubsub to get more information about why.

	PSUBSCRIBE pattern [pattern …]

	PUBSUB subcommand [argument [argument …]]

	PUBLISH channel message

	PUNSUBSCRIBE [pattern [pattern …]]

	SUBSCRIBE channel [channel …]

	UNSUBSCRIBE [channel [channel …]]

Scripting

https://redis.io/commands#scripting

	EVAL script numkeys key [key …] arg [arg …]

Warning

Method has a custom client side implementation.

Command will only work if all keys point to the same slot. Otherwise a CROSSSLOT error will be raised.

	SCRIPT DEBUG YES|SYNC|NO

Warning

Command will only be sent to all master nodes in the cluster and result will be aggregated into a dict where the key will be the internal node name.

	SCRIPT EXISTS sha1 [sha1 …]

Warning

Command will only be sent to all master nodes in the cluster and result will be aggregated into a dict where the key will be the internal node name.

	SCRIPT FLUSH

Warning

Command will only be sent to all master nodes in the cluster and result will be aggregated into a dict where the key will be the internal node name.

	SCRIPT KILL

Warning

Command has been blocked from executing in a cluster environment

	SCRIPT LOAD script

Warning

Command will only be sent to all master nodes in the cluster and result will be aggregated into a dict where the key will be the internal node name.

Server

https://redis.io/commands#server

	ACL LOAD

Warning

Command has been blocked from executing in a cluster environment

	ACL SAVE

Warning

Command has been blocked from executing in a cluster environment

	ACL LIST

Warning

Command has been blocked from executing in a cluster environment

	ACL USERS

Warning

Command has been blocked from executing in a cluster environment

	ACL GETUSER username

Warning

Command has been blocked from executing in a cluster environment

	ACL SETUSER username [rule [rule …]]

Warning

Command has been blocked from executing in a cluster environment

	ACL DELUSER username [username …]

Warning

Command has been blocked from executing in a cluster environment

	ACL CAT [categoryname]

Warning

Command has been blocked from executing in a cluster environment

	ACL GENPASS [bits]

Warning

Command has been blocked from executing in a cluster environment

	ACL WHOAMI

Warning

Command has been blocked from executing in a cluster environment

	ACL LOG [count or RESET]

Warning

Command has been blocked from executing in a cluster environment

	ACL HELP

Warning

Command has been blocked from executing in a cluster environment

	BGREWRITEAOF

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	BGSAVE [SCHEDULE]

Warning

Command is sent to all nodes in the cluster.

Result from each node will be aggregated into a dict where the key will be the internal node name.

	[NYV] - COMMAND

	[NYV] - COMMAND COUNT

	[NYV] - COMMAND GETKEYS

	[NYV] - COMMAND INFO command-name [command-name …]

	[NYV] - CONFIG GET parameter

	[NYV] - CONFIG REWRITE

	[NYV] - CONFIG SET parameter value

	[NYV] - CONFIG RESETSTAT

	[NYV] - DBSIZE

	[NYV] - DEBUG OBJECT key

	[NYV] - DEBUG SEGFAULT

	[NYV] - FLUSHALL [ASYNC]

	[NYV] - FLUSHDB [ASYNC]

	[NYV] - INFO [section]

	[NYV] - LOLWUT [VERSION version]

	[NYV] - LASTSAVE

	[NYV] - MEMORY DOCTOR

	[NYV] - MEMORY HELP

	[NYV] - MEMORY MALLOC-STATS

	[NYV] - MEMORY PURGE

	[NYV] - MEMORY STATS

	[NYV] - MEMORY USAGE key [SAMPLES count]

	[NYV] - MODULE LIST

	[NYV] - MODULE LOAD path [arg [arg …]]

	[NYV] - MODULE UNLOAD name

	[NYV] - MONITOR

	[NYV] - ROLE

	[NYV] - SAVE

	[NYV] - SHUTDOWN [NOSAVE|SAVE]

	[NYV] - SLAVEOF host port

	[NYV] - REPLICAOF host port

	[NYV] - SLOWLOG subcommand [argument]

	[NYV] - SWAPDB index1 index2

	[NYV] - SYNC

	[NYV] - PSYNC replicationid offset

	[NYV] - TIME

Note

Command is sent to all nodes in the cluster.

Result is merged into a single dict with node as key.

	[NYV] - LATENCY DOCTOR

	[NYV] - LATENCY GRAPH event

	[NYV] - LATENCY HISTORY event

	[NYV] - LATENCY LATEST

	[NYV] - LATENCY RESET [event [event …]]

	[NYV] - LATENCY HELP

Sets

https://redis.io/commands#set

	[NYV] - SADD key member [member …]

	[NYV] - SCARD key

	[NYV] - SDIFF key [key …]

	[NYV] - SDIFFSTORE destination key [key …]

	[NYV] - SINTER key [key …]

	[NYV] - SINTERSTORE destination key [key …]

	[NYV] - SISMEMBER key member

	[NYV] - SMEMBERS key

	[NYV] - SMOVE source destination member

	[NYV] - SPOP key [count]

	[NYV] - SRANDMEMBER key [count]

	[NYV] - SREM key member [member …]

	[NYV] - SUNION key [key …]

	[NYV] - SUNIONSTORE destination key [key …]

	[NYV] - SSCAN key cursor [MATCH pattern] [COUNT count]

Sorted Sets

https://redis.io/commands#sorted_set

	[NYV] - BZPOPMIN key [key …] timeout

	[NYV] - BZPOPMAX key [key …] timeout

	[NYV] - ZADD key [NX|XX] [CH] [INCR] score member [score member …]

	[NYV] - ZCARD key

	[NYV] - ZCOUNT key min max

	[NYV] - ZINCRBY key increment member

	[NYV] - ZINTERSTORE destination numkeys key [key …] [WEIGHTS weight [weight …]] [AGGREGATE SUM|MIN|MAX]

	[NYV] - ZLEXCOUNT key min max

	[NYV] - ZPOPMAX key [count]

	[NYV] - ZPOPMIN key [count]

	[NYV] - ZRANGE key start stop [WITHSCORES]

	[NYV] - ZRANGEBYLEX key min max [LIMIT offset count]

	[NYV] - ZREVRANGEBYLEX key max min [LIMIT offset count]

	[NYV] - ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]

	[NYV] - ZRANK key member

	[NYV] - ZREM key member [member …]

	[NYV] - ZREMRANGEBYLEX key min max

	[NYV] - ZREMRANGEBYRANK key start stop

	[NYV] - ZREMRANGEBYSCORE key min max

	[NYV] - ZREVRANGE key start stop [WITHSCORES]

	[NYV] - ZREVRANGEBYSCORE key max min [WITHSCORES] [LIMIT offset count]

	[NYV] - ZREVRANK key member

	[NYV] - ZSCORE key member

	[NYV] - ZUNIONSTORE destination numkeys key [key …] [WEIGHTS weight [weight …]] [AGGREGATE SUM|MIN|MAX]

	[NYV] - ZSCAN key cursor [MATCH pattern] [COUNT count]

Streams

https://redis.io/commands#stream

	[NYV] - XINFO [CONSUMERS key groupname] [GROUPS key] [STREAM key] [HELP]

	[NYV] - XADD key ID field value [field value …]

	[NYV] - XTRIM key MAXLEN [~] count

	[NYV] - XDEL key ID [ID …]

	[NYV] - XRANGE key start end [COUNT count]

	[NYV] - XREVRANGE key end start [COUNT count]

	[NYV] - XLEN key

	[NYV] - XREAD [COUNT count] [BLOCK milliseconds] STREAMS key [key …] id [id …]

	[NYV] - XGROUP [CREATE key groupname id-or-$] [SETID key groupname id-or-$] [DESTROY key groupname] [DELCONSUMER key groupname consumername]

	[NYV] - XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key …] ID [ID …]

	[NYV] - XACK key group ID [ID …]

	[NYV] - XCLAIM key group consumer min-idle-time ID [ID …] [IDLE ms] [TIME ms-unix-time] [RETRYCOUNT count] [FORCE] [JUSTID]

	[NYV] - XPENDING key group [start end count] [consumer]

Strings

https://redis.io/commands#string

	[NYV] - APPEND key value

	[NYV] - BITCOUNT key [start end]

	[NYV] - BITFIELD key [GET type offset] [SET type offset value] [INCRBY type offset increment] [OVERFLOW WRAP|SAT|FAIL]

	BITOP operation destkey key [key …]

Note

Command only works if keys is in same slot. No custom client implementation exists.

	BITPOS key bit [start] [end]

	DECR key

	DECRBY key decrement

	GET key

	GETBIT key offset

	GETRANGE key start end

	GETSET key value

	INCR key

	INCRBY key increment

	INCRBYFLOAT key increment

	[NYV] - MGET key [key …]

	[NYV] - MSET key value [key value …]

	[NYV] - MSETNX key value [key value …]

	[NYV] - PSETEX key milliseconds value

	SET key value [EX seconds|PX milliseconds|KEEPTTL] [NX|XX]

	SETBIT key offset value

	SETEX key seconds value

	SETNX key value

	[NYV] - SETRANGE key offset value

	[NYV] - STRALGO LCS algo-specific-argument [algo-specific-argument …]

	[NYV] - STRLEN key

Transactions

https://redis.io/commands#transactions

	[NYV] - DISCARD

	[NYV] - EXEC

	[NYV] - MULTI

	[NYV] - UNWATCH

	[NYV] - WATCH key [key …]

Sentinel

https://redis.io/topics/sentinel

Sentinel commands is no longer needed or really supported by redis now when cluster solution is in place. All SENTINEL commands have been blocked by this client to be executed on any node in the cluster.

	SENTINEL GET-MASTER-ADDR-BY-NAME

	SENTINEL MASTER

	SENTINEL MASTERS

	SENTINEL MONITOR

	SENTINEL REMOVE

	SENTINEL SENTINELS

	SENTINEL SET

	SENTINEL SLAVES

Limitations and differences

This will compare against redis-py

There is a lot of differences that have to be taken into consideration when using redis cluster.

Any method that can operate on multiple keys have to be reimplemented in the client and in some cases that is not possible to do. In general any method that is overridden in RedisCluster have lost the ability of being atomic.

Pipelines do not work the same way in a cluster. In Redis it batches all commands so that they can be executed at the same time when requested. But with RedisCluster pipelines will send the command directly to the server when it is called, but it will still store the result internally and return the same data from .execute(). This is done so that the code still behaves like a pipeline and no code will break. A better solution will be implemented in the future.

A lot of methods will behave very different when using RedisCluster. Some methods send the same request to all servers and return the result in another format than Redis does. Some methods are blocked because they do not work / are not implemented / are dangerous to use in redis cluster.

Some of the commands are only partially supported when using RedisCluster. The commands zinterstore and zunionstore are only supported if all the keys map to the same key slot in the cluster. This can be achieved by namespacing related keys with a prefix followed by a bracketed common key. Example:

r.zunionstore('d{foo}', ['a{foo}', 'b{foo}', 'c{foo}'])

This corresponds to how redis behaves in cluster mode. Eventually these commands will likely be more fully supported by implementing the logic in the client library at the expense of atomicity and performance.

Pipelines

How pipelining works

In redis-py-cluster, pipelining is all about trying to achieve greater network efficiency. Transaction support is disabled in redis-py-cluster. Use pipelines to avoid extra network round-trips, not to ensure atomicity.

Just like in redis-py, redis-py-cluster queues up all the commands inside the client until execute is called. But, once execute is called, redis-py-cluster internals work slightly differently. It still packs the commands to efficiently transmit multiple commands across the network. But since different keys may be mapped to different nodes, redis-py-cluster must first map each key to the expected node. It then packs all the commands destined for each node in the cluster into its own packed sequence of commands. It uses the redis-py library to communicate with each node in the cluster.

Ideally all the commands should be sent to each node in the cluster in parallel so that all the commands can be processed as fast as possible. We do this by first writing all of the commands to the sockets sequentially before reading any of the responses. This allows us to parallelize the network i/o without the overhead of managing python threads.

In previous versions of the library there were some bugs associated with pipelining operations. In an effort to simplify the logic and lessen the likelihood of bugs, if we get back connection errors, MOVED errors, ASK errors or any other error that can safely be retried, we fall back to sending these remaining commands sequentially to each individual node just as we would in a normal redis call. We still buffer the results inside the pipeline response so there will be no change in client behavior. During normal cluster operations, pipelined commands should work nearly efficiently as pipelined commands to a single instance redis. When there is a disruption to the cluster topography, like when keys are being resharded, or when a slave takes over for a master, there will be a slight loss of network efficiency. Commands that are rejected by the server are tried one at a time as we rebuild the slot mappings. Once the slots table is rebuilt correctly (usually in a second or so), the client resumes efficient networking behavior. We felt it was more important to prioritize correctness of behavior and reliable error handling over networking efficiency for the rare cases where the cluster topography is in flux.

Connection Error handling

The other way pipelines differ in redis-py-cluster from redis-py is in error handling and retries. With the normal redis-py client, if you hit a connection error during a pipeline command it raises the error right there. But we expect redis-cluster to be more resilient to failures.

If you hit a connection problem with one of the nodes in the cluster, most likely a stand-by slave will take over for the down master pretty quickly. In this case, we try the commands bound for that particular node to another random node. The other random node will not just blindly accept these commands. It only accepts them if the keys referenced in those commands actually map to that node in the cluster configuration.

Most likely it will respond with a MOVED error telling the client the new master for those commands. Our code handles these MOVED commands according to the redis cluster specification and re-issues the commands to the correct server transparently inside of pipeline.execute() method. You can disable this behavior if you’d like as well.

ASKED and MOVED errors

The other tricky part of the redis-cluster specification is that if any command response comes back with an ASK or MOVED error, the command is to be retried against the specified node.

In previous versions of redis-py-cluster treated ASKED and MOVED errors the same, but they really need to be handled differently. MOVED error means that the client can safely update its own representation of the slots table to point to a new node for all future commands bound for that slot.

An ASK error means the slot is only partially migrated and that the client can only successfully issue that command to the new server if it prefixes the request with an `ASKING¨ ` command first. This lets the new node taking over that slot know that the original server said it was okay to run that command for the given key against the new node even though the slot is not yet completely migrated. Our current implementation now handles this case correctly.

The philosophy on pipelines

After playing around with pipelines and thinking about possible solutions that could be used in a cluster setting this document will describe how pipelines work, strengths and weaknesses of the implementation that was chosen.

Why can’t we reuse the pipeline code in redis-py? In short it is almost the same reason why code from the normal redis client can’t be reused in a cluster environment and that is because of the slots system. Redis cluster consist of a number of slots that is distributed across a number of servers and each key belongs in one of these slots.

In the normal pipeline implementation in redis-py we can batch send all the commands and send them to the server at once, thus speeding up the code by not issuing many requests one after another. We can say that we have defined and guaranteed execution order because of this.

One problem that appears when you want to do pipelines in a cluster environment is that you can’t have guaranteed execution order in the same way as a single server pipeline. The problem is that because you can queue a command to any key, we will end up in most of the cases having to talk to 2 or more nodes in the cluster to execute the pipeline. The problem with that is that there is no single place/node/way to send the pipeline and redis will sort everything out by itself via some internal mechanisms. Because of that when we build a pipeline for a cluster we have to build several smaller pipelines that we each send to the designated node in the cluster.

When the pipeline is executed in the client each key is checked to what slot it should be sent to and the pipeline is built up based on that information. One thing to note here is that there will be partial correct execution order if you look over the entire cluster because for each pipeline the ordering will be correct. It can also be argued that the correct execution order is applied/valid for each slot in the cluster.

The next thing to take into consideration is what commands should be available and which should be blocked/locked.

In most cases and in almost all solutions multi key commands have to be blocked hard from being executed inside a pipeline. This would only be possible in the case you have a pipeline implementation that always executes immediately each command is queued up. That solution would only give the interface of working like a pipeline to ensure old code will still work, but it would not give any benefits or advantages other than all commands would work and old code would work.

In the solution for this lib multikey commands are blocked hard and will probably not be enabled in pipelines. If you really need to use them you need to execute them through the normal cluster client if they are implemented and work in there. Why can’t multi key commands work? In short again it is because the keys can live in different slots on different nodes in the cluster. It is possible in theory to have any command work in a cluster, but only if the keys operated on belong to the same cluster slot. This lib have decided that currently no serious support for that will be attempted.

Examples on commands that do not work is MGET, MSET, MOVE.

One good thing that comes out of blocking multi key commands is that correct execution order is less of a problem and as long as it applies to each slot in the cluster we should be fine.

Consider the following example. Create a pipeline and issue 6 commands A, B, C, D, E, F and then execute it. The pipeline is calculated and 2 sub pipelines is created with A, C, D, F in the first and B, E in the second. Both pipelines are then sent to each node in the cluster and a response is sent back. For the first node [True, MovedException(12345), MovedException(12345), True] and from the second node [True, True]. After this response is parsed we see that 2 commands in the first pipeline did not work and must be sent to another node. This case happens if the client slots cache is wrong because a slot was migrated to another node in the cluster. After parsing the response we then build a third pipeline object with commands [C, D] to the second node. The third object is executed and passes and from the client perspective the entire pipeline was executed.

If we look back at the order we executed the commands we get [A, F] for the first node and [B, E, C, D] for the second node. At first glance this looks like it is out of order because command E is executed before C & D. Why is this not matter? Because no multi key operations can be done in a pipeline, we only have to care the execution order is correct for each slot and in this case it was because B & E belongs to the same slot and C & D belongs to the same slot. There should be no possible way to corrupt any data between slots if multi key commands are blocked by the code.

What is good with this pipeline solution? First we can actually have a pipeline solution that will work in most cases with few commands blocked (only multi key commands). Secondly we can run it in parallel to increase the performance of the pipeline even further, making the benefits even greater.

Packing Commands

When issuing only a single command, there is only one network round trip to be made. But what if you issue 100 pipelined commands? In a single-instance redis configuration, you still only need to make one network hop. The commands are packed into a single request and the server responds with all the data for those requests in a single response. But with redis cluster, those keys could be spread out over many different nodes.

The client is responsible for figuring out which commands map to which nodes. Let’s say for example that your 100 pipelined commands need to route to 3 different nodes? The first thing the client does is break out the commands that go to each node, so it only has 3 network requests to make instead of 100.

Parallel execution of pipeline

In older version of redis-py-cluster, there was a thread implementation that helped to increase the performance of running pipelines by running the connections and execution of all commands to all nodes in the pipeline in parallel. This implementation was later removed in favor of a much simpler and faster implementation.

In this new implementation we execute everything in the same thread, but we do all the writing to all sockets in order to each different server and then start to wait for them in sequence until all of them is complete. There is no real need to run them in parallel since we still have to wait for a thread join of all parallel executions before the code can continue, so we can wait in sequence for all of them to complete. This is not the absolute fastest implementation, but it much simpler to implement and maintain and cause less issues because there is no threads or other parallel implementation that will use some overhead and add complexity to the method.

This feature is implemented by default and will be used in all pipeline requests.

Transactions and WATCH

Support for transactions and WATCH:es in pipelines. If we look on the entire pipeline across all nodes in the cluster there is no possible way to have a complete transaction across all nodes because if we need to issue commands to 3 servers, each server is handled by its own and there is no way to tell other nodes to abort a transaction if only one of the nodes fail but not the others. A possible solution for that could be to implement a 2 step commit process. The 2 steps would consist of building 2 batches of commands for each node where the first batch would consist of validating the state of each slot that the pipeline wants to operate on. If any of the slots is migrating or moved then the client can correct its slots cache and issue a more correct pipeline batch. The second step would be to issue the actual commands and the data would be committed to redis. The big problem with this is that 99% of the time this would work really well if you have a very stable cluster with no migrations/resharding/servers down. But there can be times where a slot has begun migration in between the 2 steps of the pipeline and that would cause a race condition where the client thinks it has corrected the pipeline and wants to commit the data but when it does it will still fail.

Why MULTI/EXEC support won’t work in a cluster environment. There is some test code in the second MULTI/EXEC cluster test code of this document that tests if MULTI/EXEC is possible to use in a cluster pipeline. The test shows a huge problem when errors occur. If we wrap MULTI/EXEC in a packed set of commands then if a slot is migrating we will not get a good error we can parse and use. Currently it will only report True or False so we can narrow down what command failed but not why it failed. This might work really well if used on a non clustered node because it does not have to take care of ASK or MOVED errors. But for a cluster we need to know what cluster error occurred so the correct action to fix the problem can be taken. Since there is more then 1 error to take care of it is not possible to take action based on just True or False.

Because of this problem with error handling MULTI/EXEC is blocked hard in the code from being used in a pipeline because the current implementation can’t handle the errors.

In theory it could be possible to design a pipeline implementation that can handle this case by trying to determine by itself what it should do with the error by either asking the cluster after a False value was found in the response about the current state of the slot or just default to MOVED error handling and hope for the best. The problem is that this is not 100% guaranteed to work and can easily cause problems when wrong action was taken on the response.

Currently WATCH requires more studying is it possible to use or not, but since it is tied into MULTI/EXEC pattern it probably will not be supported for now.

MULTI/EXEC cluster test code

This code does NOT wrap MULTI/EXEC around the commands when packed

>>> from rediscluster import RedisCluster as s

>>> r = s(startup_nodes=[{"host": "127.0.0.1", "port": "7002"}])

>>> # Simulate that a slot is migrating to another node
>>> r.connection_pool.nodes.slots[14226] = [{
>>> 'host': '127.0.0.1',
>>> 'server_type': 'master',
>>> 'port': 7001,
>>> 'name': '127.0.0.1:7001',
>>> }]

>>> p = r.pipeline()
>>> p.set('ert', 'tre')
>>> p.set('wer', 'rew')
>>> print(p.execute())

ClusterConnection<host=127.0.0.1,port=7001>
[True, ResponseError('MOVED 14226 127.0.0.1:7002',)]
ClusterConnection<host=127.0.0.1,port=7002>
[True]

This code DO wrap MULTI/EXEC around the commands when packed

>>> from rediscluster import RedisCluster as s

>>> r = s(startup_nodes=[{"host": "127.0.0.1", "port": "7002"}])

>>> # Simulate that a slot is migrating to another node
>>> r.connection_pool.nodes.slots[14226] = [{
>>> 'host': '127.0.0.1',
>>> 'server_type': 'master',
>>> 'port': 7001,
>>> 'name': '127.0.0.1:7001',
>>> }]

>>> p = r.pipeline()
>>> p.set('ert', 'tre')
>>> p.set('wer', 'rew')
>>> print(p.execute())

ClusterConnection<host=127.0.0.1,port=7001>
[True, False]

Different pipeline solutions

This section will describe different types of pipeline solutions. It will list their main benefits and weaknesses.

Note

This section is mostly random notes and thoughts and not that well written and cleaned up right now. It will be done at some point in the future.

Suggestion one

Simple but yet sequential pipeline. This solution acts more like an interface for the already existing pipeline implementation and only provides a simple backwards compatible interface to ensure that code that exists still will work without any major modifications. This is good because, with this implementation, all commands are run in sequence and it will handle MOVED or ASK redirections very well and without any problems. The major downside to this solution is that no command is ever batched and run in parallel and thus you do not get any major performance boost from this approach. Another plus is that execution order is preserved across the entire cluster but a major downside is that the commands are no longer atomic on the cluster scale because they are sent in multiple commands to different nodes.

Good

	Sequential execution of the entire pipeline

	Easy ASK or MOVED handling

Bad

	No batching of commands aka. no execution speedup

Suggestion two

Current pipeline implementation. This implementation is rather good and works well because it combines the existing pipeline interface and functionality and it also provides a basic handling of ASK or MOVED errors inside the client. One major downside to this is that execution order is not preserved across the cluster. Although the execution order is somewhat broken if you look at the entire cluster level because commands can be split so that cmd1, cmd3, cmd5 get sent to one server and cmd2, cmd4 gets sent to another server. The order is then broken globally but locally for each server it is preserved and maintained correctly. On the other hand I guess that there can’t be any commands that can affect different hashslots within the same command so maybe it really doesn’t matter if the execution order is not correct because for each slot/key the order is valid.
There might be some issues with rebuilding the correct response ordering from the scattered data because each command might be in different sub pipelines. But I think that our current code still handles this correctly. I think I have to figure out some weird case where the execution order actually matters. There might be some issues with the nonsupported mget/mset commands that actually performs different sub commands then it currently supports.

Good

	Sequential execution per node

Bad

	Non sequential execution on the entire pipeline

	Medium difficult ASK or MOVED handling

Suggestion three

There is a even simpler form of pipelines that can be made where all commands is supported as long as they conform to the same hashslot because REDIS supports that mode of operation. The good thing with this is that since all keys must belong to the same slot there can’t be very few ASK or MOVED errors that happens and if they happen they will be very easy to handle because the entire pipeline is kinda atomic because you talk to the same server and only 1 server. There can’t be any multiple server communication happening.

Good

	Super simple ASK or MOVED handling

	Sequential execution per slot and through the entire pipeline

Bad

	Single slot per pipeline

Suggestion four

One other solution is the 2 step commit solution where you send for each server 2 batches of commands. The first command should somehow establish that each keyslot is in the correct state and able to handle the data. After the client have received OK from all nodes that all data slots is good to use then it will actually send the real pipeline with all data and commands. The big problem with this approach is that there is a gap between the checking of the slots and the actual sending of the data where things can happen to the already established slots setup. But at the same time there is no possibility of merging these 2 steps because if step 2 is automatically run if step 1 is Ok then the pipeline for the first node that will fail will fail but for the other nodes it will succeed but when it should not because if one command gets ASK or MOVED redirection then all pipeline objects must be rebuilt to match the new specs/setup and then reissued by the client. The major advantage of this solution is that if you have total control of the redis server and do controlled upgrades when no clients is talking to the server then it can actually work really well because there is no possibility that ASK or MOVED will triggered by migrations in between the 2 batches.

Good

	Still rather safe because of the 2 step commit solution

	Handles ASK or MOVED before committing the data

Bad

	Big possibility of race conditions that can cause problems

Pubsub

After testing pubsub in cluster mode one big problem was discovered with the PUBLISH command.

According to the current official redis documentation on PUBLISH:

Integer reply: the number of clients that received the message.

It was initially assumed that if we had clients connected to different nodes in the cluster it would still report back the correct number of clients that recieved the message.

However after some testing of this command it was discovered that it would only report the number of clients that have subscribed on the same server the PUBLISH command was executed on.

Because of this, if there is some functionality that relies on an exact and correct number of clients that listen/subscribed to a specific channel it will be broken or behave wrong.

Currently the only known workarounds is to:

	Ignore the returned value

	All clients talk to the same server

	Use a non clustered redis server for pubsub operations

Discussion on this topic can be found here: https://groups.google.com/forum/?hl=sv#!topic/redis-db/BlwSOYNBUl8

Scalability issues

The following part is from this discussion https://groups.google.com/forum/?hl=sv#!topic/redis-db/B0_fvfDWLGM and it describes the scalability issue that pubsub has and the performance that goes with it when used in a cluster environment.

according to [1] and [2] PubSub works by broadcasting every publish to every other
Redis Cluster node. This limits the PubSub throughput to the bisection bandwidth
of the underlying network infrastructure divided by the number of nodes times
message size. So if a typical message has 1KB, the cluster has 10 nodes and
bandwidth is 1 GBit/s, throughput is already limited to 12.5K RPS. If we increase
the message size to 5 KB and the number of nodes to 50, we only get 500 RPS
much less than a single Redis instance could service (>100K RPS), while putting
maximum pressure on the network. PubSub thus scales linearly wrt. to the cluster size,
but in the the negative direction!

How pubsub works in RedisCluster

In release 1.2.0 the pubsub was code was reworked to now work like this.

For PUBLISH and SUBSCRIBE commands:

	The channel name is hashed and the keyslot is determined.

	Determine the node that handles the keyslot.

	Send the command to the node.

The old solution was that all pubsub connections would talk to the same node all the time. This would ensure that the commands would work.

This new solution is probably future safe and it will probably be a similar solution when redis fixes the scalability issues.

Known limitations with pubsub

Pattern subscribe and publish do not work properly because if we hash a pattern like fo* we will get a keyslot for that string but there is a endless posiblity of channel names based on that pattern that we can’t know in advance. This feature is not limited but the commands is not recommended to use right now.

The implemented solution will only work if other clients use/adopt the same behaviour. If some other client behaves differently, there might be problems with PUBLISH and SUBSCRIBE commands behaving wrong.

Other solutions

The simplest solution is to have a seperate non clustered redis instance that you have a regular Redis instance that works with your pubsub code. It is not recommended to use pubsub until redis fixes the implementation in the server itself.

Readonly mode

By default, Redis Cluster always returns MOVE redirection response on accessing slave node. You can overcome this limitation [for scaling read with READONLY mode](http://redis.io/topics/cluster-spec#scaling-reads-using-slave-nodes).

redis-py-cluster also implements this mode. You can access slave by passing readonly_mode=True to RedisCluster (or RedisCluster) constructor.

>>> from rediscluster import RedisCluster
>>> startup_nodes = [{"host": "127.0.0.1", "port": "7000"}]
>>> rc = RedisCluster(startup_nodes=startup_nodes, decode_responses=True)
>>> rc.set("foo16706", "bar")
>>> rc.set("foo81", "foo")
True
>>> rc_readonly = RedisCluster(startup_nodes=startup_nodes, decode_responses=True, readonly_mode=True)
>>> rc_readonly.get("foo16706")
u'bar'
>>> rc_readonly.get("foo81")
u'foo'

We can use pipeline via readonly_mode=True object.

>>> with rc_readonly.pipeline() as readonly_pipe:
... readonly_pipe.get('foo81')
... readonly_pipe.get('foo16706')
... readonly_pipe.execute()
...
[u'foo', u'bar']

But this mode has some downside or limitations.

	It is possible that you cannot get the latest data from READONLY mode enabled object because Redis implements asynchronous replication.

	You MUST NOT use SET related operation with READONLY mode enabled object, otherwise you can possibly get ‘Too many Cluster redirections’ error because we choose master and its slave nodes randomly.

	You should use get related stuff only.

	Ditto with pipeline, otherwise you can get ‘Command # X (XXXX) of pipeline: MOVED’ error.

>>> rc_readonly = RedisCluster(startup_nodes=startup_nodes, decode_responses=True, readonly_mode=True)
>>> # NO: This works in almost case, but possibly emits Too many Cluster redirections error...
>>> rc_readonly.set('foo', 'bar')
>>> # OK: You should always use get related stuff...
>>> rc_readonly.get('foo')

Setup client logging

To setup logging for debugging inside the client during development you can add this as an example to your own code to enable DEBUG logging when using the library.

import logging

from rediscluster import RedisCluster

logging.basicConfig()
logger = logging.getLogger('rediscluster')
logger.setLevel(logging.DEBUG)
logger.propagate = True

Note that this logging is not reccommended to be used inside production as it can cause a performance drain and a slowdown of your client.

Redis cluster setup

Manually

	Redis cluster tutorial: http://redis.io/topics/cluster-tutorial

	Redis cluster specs: http://redis.io/topics/cluster-spec

	This video will describe how to setup and use a redis cluster: http://vimeo.com/63672368 (This video is outdated but could server as a good tutorial/example)

Docker

A fully functional docker image can be found at https://github.com/Grokzen/docker-redis-cluster

See repo README for detailed instructions how to setup and run.

Vagrant

A fully functional vagrant box can be found at https://github.com/72squared/vagrant-redis-cluster

See repo README for detailed instructions how to setup and run.

Simple makefile

A simple makefile solution can be found at https://github.com/Grokzen/travis-redis-cluster

See repo README for detailed instructions how to setup.

Benchmarks

These are a few benchmarks that are designed to test specific parts of the code to demonstrate the performance difference between using this lib and the normal Redis client.

Setup benchmarks

Before running any benchmark you should install this lib in editable mode inside a virtualenv so it can import RedisCluster lib.

Install with

pip install -e .

You also need a few redis servers to test against. You must have one cluster with at least one node on port 7001 and you must also have a non-clustered server on port 7007.

Implemented benchmarks

	simple.py, This benchmark can be used to measure a simple set and get operation chain. It also supports running pipelines by adding the flag –pipeline.

Run predefined benchmarks

These are a set of predefined benchmarks that can be run to measure the performance drop from using this library.

To run the benchmarks run

make benchmark

Example output and comparison of different runmodes

Project status

If you have a problem with the code or general questions about this lib, you can ping me inside the gitter channel that you can find here https://gitter.im/Grokzen/redis-py-cluster and i will help you out with problems or usage of this lib.

As of release 1.0.0 this project will be considered stable and usable in production. If you are going to use redis cluster in your project, you should read up on all documentation that you can find in the bottom of this Readme file. It will contain usage examples and descriptions of what is and what is not implemented. It will also describe how and why things work the way they do in this client.

On the topic about porting/moving this code into redis-py there is currently work over here https://github.com/andymccurdy/redis-py/pull/604 that will bring cluster support based on this code. But my suggestion is that until that work is completed that you should use this lib.

Testing

All tests are currently built around a 6 redis server cluster setup (3 masters + 3 slaves). One server must be using port 7000 for redis cluster discovery.

The easiest way to setup a cluster is to use either a Docker or Vagrant. They are both described in [Setup a redis cluster. Manually, Docker & Vagrant](docs/Cluster_Setup.md).

Tox - Multi environment testing

To run all tests in all supported environments with tox read this [Tox multienv testing](docs/Tox.md)

Tox is the easiest way to run all tests because it will manage all dependencies and run the correct test command for you.

TravisCI will use tox to run tests on all supported python & hiredis versions.

Install tox with pip install tox

To run all environments you need all supported python versions installed on your machine. (See supported python versions list) and you also need the python-dev package for all python versions to build hiredis.

To run a specific python version use either tox -e py27 or tox -e py34

Development

Documentation

To build and test/view documentation you need to install sphinx and addons to be able to run the local dev server to render the documentation.

Install sphinx plus addons

To start the local development server run from the root folder of this git repo

Open up localhost:8000 in your web-browser to view the online documentaion

Upgrading redis-py-cluster

This document describes what must be done when upgrading between different versions to ensure that code still works.

2.0.0 –> 2.1.0

Python3 version must now be one of 3.5, 3.6, 3.7, 3.8

The following exception example has now a new more specific exception class that will be attempted to be caught and the client to resolve the cluster layout. If enough attempts has been made then SlotNotCoveredError will be raised with the same message as before. If you have catch for RedisClusterException you either remove it and let the client try to resolve the cluster layout itself, or start to catch SlotNotCoveredError. This error usually happens during failover if you run skip_full_coverage_check=True when running on AWS ElasticCache for example.

Example exception
rediscluster.exceptions.RedisClusterException: Slot “6986” not covered by the cluster. “skip_full_coverage_check=True”

1.3.x –> 2.0.0

Redis-py upstream package dependency has now been updated to be any of the releases in the major version line 3.0.x. This means that you must upgrade your dependency from 2.10.6 to the latest version. Several internal components have been updated to reflect the code from 3.0.x.

Class StrictRedisCluster was renamed to RedisCluster. All usages of this class must be updated.

Class StrictRedis has been removed to mirror upstream class structure.

Class StrictClusterPipeline was renamed to ClusterPipeline.

Method SORT has been changed back to only allow execution if keys are in the same slot. No more client side parsing and handling of the keys and values.

1.3.2 –> Next Release

If you created the StrictRedisCluster (or RedisCluster) instance via the from_url method and were passing readonly_mode to it, the connection pool created will now properly allow selecting read-only slaves from the pool. Previously it always used master nodes only, even in the case of readonly_mode=True. Make sure your code don’t attempt any write commands over connections with readonly_mode=True.

1.3.1 –> 1.3.2

If your redis instance is configured to not have the CONFIG … commands enabled due to security reasons you need to pass this into the client object skip_full_coverage_check=True. Benefits are that the client class no longer requires the CONFIG … commands to be enabled on the server. A downside is that you can’t use the option in your redis server and still use the same feature in this client.

1.3.0 –> 1.3.1

Method scan_iter was rebuilt because it was broken and did not perform as expected. If you are using this method you should be careful with this new implementation and test it through before using it. The expanded testing for that method indicates it should work without problems. If you find any issues with the new method please open a issue on github.

A major refactoring was performed in the pipeline system that improved error handling and reliability of execution. It also simplified the code, making it easier to understand and to continue development in the future. Because of this major refactoring you should thoroughly test your pipeline code to ensure that none of your code is broken.

1.2.0 –> Next release

Class RedisClusterMgt has been removed. You should use the CLUSTER … methods that exist in the StrictRedisCluster client class.

Method cluster_delslots changed argument specification from self, node_id, *slots to self, *slots and changed the behaviour of the method to now automatically determine the slot_id based on the current cluster structure and where each slot that you want to delete is loaded.

Method pfcount no longer has custom logic and exceptions to prevent CROSSSLOT errors. If method is used with different slots then a regular CROSSSLOT error (rediscluster.exceptions.ClusterCrossSlotError) will be returned.

1.1.0 –> 1.2.0

Discontinue passing pipeline_use_threads flag to rediscluster.StrictRedisCluster or rediscluster.RedisCluster.

Also discontinue passing use_threads flag to the pipeline() method.

In 1.1.0 and prior, you could use pipeline_use_threads flag to tell the client to perform queries to the different nodes in parallel via threads. We exposed this as a flag because using threads might have been risky and we wanted people to be able to disable it if needed.

With this release we figured out how parallelize commands without the need for threads. We write to all the nodes before reading from them, essentially multiplexing the connections (but without the need for complicated socket multiplexing). We found this approach to be faster and more scalable as more nodes are added to the cluster.

That means we don’t need the pipeline_use_threads flag anymore, or the use_threads flag that could be passed into the instantiation of the pipeline object itself.

The logic is greatly simplified and the default behavior will now come with a performance boost and no need to use threads.

Publish and subscribe no longer connects to a single instance. It now hashes the channel name and uses that to determine what node to connect to. More work will be done in the future when redis-server improves the pubsub implementation. Please read up on the documentation about pubsub in the docs/pubsub.md file about the problems and limitations on using a pubsub in a cluster.

Commands Publish and Subscribe now uses the same connections as any other commands. If you are using any pubsub commands you need to test it through thoroughly to ensure that your implementation still works.

To use less strict cluster slots discovery you can add the following config to your redis-server config file “cluster-require-full-coverage=no” and this client will honour that setting and not fail if not all slots is covered.

A bug was fixed in ‘sdiffstore’, if you are using this, verify that your code still works as expected.

Class RedisClusterMgt is now deprecated and will be removed in next release in favor of all cluster commands implemented in the client in this release.

1.0.0 –> 1.1.0

The following exceptions have been changed/added and code that use this client might have to be updated to handle the new classes.

raise RedisClusterException(“Too many Cluster redirections”) have been changed to raise ClusterError(‘TTL exhausted.’)

ClusterDownException have been replaced with ClusterDownError

Added new AskError exception class.

Added new TryAgainError exception class.

Added new MovedError exception class.

Added new ClusterCrossSlotError exception class.

Added optional max_connections_per_node parameter to ClusterConnectionPool which changes behavior of max_connections so that it applies per-node rather than across the whole cluster. The new feature is opt-in, and the existing default behavior is unchanged. Users are recommended to opt-in as the feature fixes two important problems. First is that some nodes could be starved for connections after max_connections is used up by connecting to other nodes. Second is that the asymmetric number of connections across nodes makes it challenging to configure file descriptor and redis max client settings.

Reinitialize on MOVED errors will not run on every error but instead on every
25 error to avoid excessive cluster reinitialize when used in multiple threads and resharding at the same time. If you want to go back to the old behaviour with reinitialize on every error you should pass in reinitialize_steps=1 to the client constructor. If you want to increase or decrease the intervall of this new behaviour you should set reinitialize_steps in the client constructor to a value that you want.

Pipelines in general have received a lot of attention so if you are using pipelines in your code, ensure that you test the new code out a lot before using it to make sure it still works as you expect.

The entire client code should now be safer to use in a threaded environment. Some race conditions was found and have now been fixed and it should prevent the code from behaving weird during reshard operations.

0.2.0 –> 0.3.0

In 0.3.0 release the name of the client class was changed from RedisCluster to StrictRedisCluster and a new implementation of RedisCluster was added that is based on redis.Redis class. This was done to enable implementation a cluster enabled version of redis.Redis class.

Because of this all imports and usage of RedisCluster must be changed to StrictRedisCluster so that existing code will remain working. If this is not done some issues could arise in existing code.

0.1.0 –> 0.2.0

No major changes was done.

Release Notes

2.1.0 (May **, 2020)

	Add new config option for Client and Pipeline classes to controll how many attempts will be made before bailing out from a ClusterDownError.
Use “cluster_down_retry_attempts=<int>” when creating the client class to controll this behaviour.

	Updated redis-py compatbile version to support any version in the major version 3.0.x, 3.1.x, 3.2.x, 3.3.x., 3.4.x, 3.5.x (#326)
It is always recommended to use the latest version of redis-py to avoid issues and compatiblity problems.

	Fixed bug preventing reinitialization after getting MOVED errors

	Add testing of redis-esrver 6.0 versions to travis and unit tests

	Add python 2.7 compatiblity note about deprecation and upcomming changes in python 2.7 support for this lib

	Updated tests and cluster tests versions of the same methods to latest tests from upstream redis-py package

	Reorganized tests and how cluster specific tests is written and run over the upstream version of the same test to make it easier
and much faster to update and keep them in sync over time going into the future (#368)

	Python 3.5.x or higher is now required if running on a python 3 version

	Removed the monkeypatching of RedisCluster, ClusterPubSub & ClusterPipeline class names into the “redis” python package namespace during runtime.
They are now exposed in the “rediscluster” namespace to mimic the same feature from redis-py

	cluster_down_retry_attempts can now be configured to any value when creating RedisCluster instance

	Creating RedisCluster from unix socket url:s has been disabled

	Patch the from_url method to use the corret cluster version of the same Connection class

	ConnectionError and TimeoutError is now handled seperately in the main execute loop to better handle each case (#363)

	Update scan_iter custom cluster implementation

	Improve description_format handling for connection classes to simplify how they work

	Implement new connection pool ClusterBlockingConnectionPool (#347)

	Nodemanager initiailize should now handle usernames properly (#365)

	PubSub tests has been all been disabled

	New feature, host_port_remap. Send in a remapping configuration to RedisCluster instance where the nodes configuration recieved from the redis cluster can be altered to allow for connection in certain circumstances. See new section in client.rst in docs/ for usage example.

	When a slot is not covered by the cluster, it will not raise SlotNotCoveredError instead of the old generic RedisClusterException. The client will not attempt to rebuild the cluster layout a few times before giving up and raising that exception to the user. (#350)

	CLIENT SETNAME is now possible to use from the client instance. For setting the name for all connections from the client by default, see issue #802 in redis-py repo for the change that was implemented in redis-py 3.4.0.

	Rewrote implemented commands documentation to mimic the redis.io commands documentation and describe each command and any additional implementation that has been made.

	Added RTD theme to the rendered output when running the documentation in local dev mode.

	Added some basic logging to the client that should make it easier to debug and track down minor issues around the main execution loop. See docs/logging.rst for implementation example into your own code.

	Seperated some of the exception handling inside the main execution loop to get more fine grained controll what to do at certain errors.

2.0.0 (Aug 12, 2019)

Specific changes to redis-py-cluster is mentioned below here.

	Update entire code base to now support all redis-py version in the 3.0.x version line. Any future redis-py version will be supported at a later time.

	Major update to all tests to mirror the code of the same tests from redis-py

	Dropped support for the 2.10.6 redis-py release.

	Add pythoncodestyle lint validation check to travis-ci runs to check for proper linting before accepting PR:s

	Class StrictRedisCluster was renamed to RedisCluster

	Class StrictRedis has been removed to mirror upstream class structure

	Class StrictClusterPipeline was renamed to ClusterPipeline

	Fixed travis-ci tests not running properly on python 3.7

	Fixed documentation regarding threads in pipelines

	Update lit of command callbacks and parsers. Added in “CLIENT ID”

	Removed custom implementation of SORT and revert back to use same-slot mechanism for that command.

	Added better exception message to get_master_node_by_slot command to help the user understand the error.

	Improved the exception object message parsing when running on python3

1.3.6 (Nov 16, 2018)

	Pin upstream redis-py package to release 2.10.6 to avoid issues with incompatible version 3.0.0

1.3.5 (July 22, 2018)

	Add Redis 4 compatability fix to CLUSTER NODES command (See issue #217)

	Fixed bug with command “CLUSTER GETKEYSINSLOT” that was throwing exceptions

	Added new methods cluster_get_keys_in_slot() to client

	Fixed bug with StrictRedisCluster.from_url that was ignoring the readonly_mode parameter

	NodeManager will now ignore nodes showing cluster errors when initializing the cluster

	Fix bug where RedisCluster wouldn’t refresh the cluster table when executing commands on specific nodes

	Add redis 5.0 to travis-ci tests

	Change default redis version from 3.0.7 to 4.0.10

	Increase accepted ranges of dependencies specefied in dev-requirements.txt

	Several major and minor documentation updates and tweaks

	Add example script “from_url_password_protected.py”

	command “CLUSTER GETKEYSINSLOT” is now returned as a list and not int

	Improve support for ssl connections

	Retry on Timeout errors when doing cluster discovery

	Added new error class “MasterDownError”

	Updated requirements for dependency of redis-py to latest version

1.3.4 (Mar 5, 2017)

	Package is now built as a wheel and source package when releases is built.

	Fixed issues with some key types in NodeManager.keyslot().

	Add support for PUBSUB subcommands CHANNELS, NUMSUB [arg] [args…] and NUMPAT.

	Add method set_result_callback(command, callback) allowing the default reply callbacks to be changed, in the same way set_response_callback(command, callback) inherited from Redis-Py does for responses.

	Node manager now honors defined max_connections variable so connections that is emited from that class uses the same variable.

	Fixed a bug in cluster detection when running on python 3.x and decode_responses=False was used.
Data back from redis for cluster structure is now converted no matter what the data you want to set/get later is using.

	Add SSLClusterConnection for connecting over TLS/SSL to Redis Cluster

	Add new option to make the nodemanager to follow the cluster when nodes move around by avoiding to query the original list of startup nodes that was provided
when the client object was first created. This could make the client handle drifting clusters on for example AWS easier but there is a higher risk of the client talking to
the wrong group of nodes during split-brain event if the cluster is not consistent. This feature is EXPERIMENTAL and use it with care.

1.3.3 (Dec 15, 2016)

	Remove print statement that was faulty commited into release 1.3.2 that case logs to fill up with unwanted data.

1.3.2 (Nov 27, 2016)

	Fix a bug where from_url was not possible to use without passing in additional variables. Now it works as the same method from redis-py.
Note that the same rules that is currently in place for passing ip addresses/dns names into startup_nodes variable apply the same way through
the from_url method.

	Added options to skip full coverage check. This flag is useful when the CONFIG redis command is disabled by the server.

	Fixed a bug where method CLUSTER SLOTS would break in newer redis versions where node id is included in the reponse. Method is not compatible with both old and new redis versions.

1.3.1 (Oct 13, 2016)

	Rebuilt broken method scan_iter. Previous tests was to small to detect the problem but is not corrected to work on a bigger dataset during the test of that method. (korvus81, Grokzen, RedWhiteMiko)

	Errors in pipeline that should be retried, like connection errors, moved, errors and ask errors now fall back to single operation logic in StrictRedisCluster.execute_command. (72squared).

	Moved reinitialize_steps and counter into nodemanager so it can be correctly counted across pipeline operations (72squared).

1.3.0 (Sep 11, 2016)

	Removed RedisClusterMgt class and file

	Fixed a bug when using pipelines with RedisCluster class (Ozahata)

	Bump redis-server during travis tests to 3.0.7

	Added docs about same module name in another python redis cluster project.

	Fix a bug when a connection was to be tracked for a node but the node either do not yet exists or
was removed because of resharding was done in another thread. (ashishbaghudana)

	Fixed a bug with “CLUSTER …” commands when a node_id argument was needed and the return type
was supposed to be converted to bool with bool_ok in redis._compat.

	Add back gitter chat room link

	Add new client commands
- cluster_reset_all_nodes

	Command cluster_delslots now determines what cluster shard each slot is on and sends each slot deletion
command to the correct node. Command have changed argument spec (Read Upgrading.rst for details)

	Fixed a bug when hashing the key it if was a python 3 byte string and it would cause it to route to wrong slot in the cluster (fossilet, Grokzen)

	Fixed a bug when reinitialize the nodemanager it would use the old nodes_cache instead of the new one that was just parsed (monklof)

1.2.0 (Apr 09, 2016)

	Drop maintained support for python 3.2.

	Remove Vagrant file in favor for repo maintained by 72squared

	Add Support for password protected cluster (etng)

	Removed assertion from code (gmolight)

	Fixed a bug where a regular connection pool was allocated with each StrictRedisCluster instance.

	Rework pfcount to now work as expected when all arguments points to same hashslot

	New code and important changes from redis-py 2.10.5 have been added to the codebase.

	Removed the need for threads inside of pipeline. We write the packed commands all nodes before reading the responses which gives us even better performance than threads, especially as we add more nodes to the cluster.

	Allow passing in a custom connection pool

	Provide default max_connections value for ClusterConnectionPool (2**31)

	Travis now tests both redis 3.0.x and 3.2.x

	Add simple ptpdb debug script to make it easier to test the client

	Fix a bug in sdiffstore (mt3925)

	Fix a bug with scan_iter where duplicate keys would be returned during itteration

	Implement all “CLUSTER …” commands as methods in the client class

	Client now follows the service side setting ‘cluster-require-full-coverage=yes/no’ (baranbartu)

	Change the pubsub implementation (PUBLISH/SUBSCRIBE commands) from using one single node to now determine the hashslot for the channel name and use that to connect to
a node in the cluster. Other clients that do not use this pattern will not be fully compatible with this client. Known limitations is pattern
subscription that do not work properly because a pattern can’t know all the possible channel names in advance.

	Convert all docs to ReadTheDocs

	Rework connection pool logic to be more similar to redis-py. This also fixes an issue with pubsub and that connections
was never release back to the pool of available connections.

1.1.0 (Oct 27, 2015)

	Refactored exception handling and exception classes.

	Added READONLY mode support, scales reads using slave nodes.

	Fix __repr__ for ClusterConnectionPool and ClusterReadOnlyConnectionPool

	Add max_connections_per_node parameter to ClusterConnectionPool so that max_connections parameter is calculated per-node rather than across the whole cluster.

	Improve thread safty of get_connection_by_slot and get_connection_by_node methods (iandyh)

	Improved error handling when sending commands to all nodes, e.g. info. Now the connection takes retry_on_timeout as an option and retry once when there is a timeout. (iandyh)

	Added support for SCRIPT LOAD, SCRIPT FLUSH, SCRIPT EXISTS and EVALSHA commands. (alisaifee)

	Improve thread safety to avoid exceptions when running one client object inside multiple threads and doing resharding of the
cluster at the same time.

	Fix ASKING error handling so now it really sends ASKING to next node during a reshard operation. This improvement was also made to pipelined commands.

	Improved thread safety in pipelined commands, along better explanation of the logic inside pipelining with code comments.

1.0.0 (Jun 10, 2015)

	No change to anything just a bump to 1.0.0 because the lib is now considered stable/production ready.

0.3.0 (Jun 9, 2015)

	simple benchmark now uses docopt for cli parsing

	New make target to run some benchmarks ‘make benchmark’

	simple benchmark now support pipelines tests

	Renamed RedisCluster –> StrictRedisCluster

	Implement backwards compatible redis.Redis class in cluster mode. It was named RedisCluster and everyone updating from 0.2.0 to 0.3.0 should consult docs/Upgrading.md for instructions how to change your code.

	Added comprehensive documentation regarding pipelines

	Meta retrieval commands(slots, nodes, info) for Redis Cluster. (iandyh)

0.2.0 (Dec 26, 2014)

	Moved pipeline code into new file.

	Code now uses a proper cluster connection pool class that handles
all nodes and connections similar to how redis-py do.

	Better support for pubsub. All clients will now talk to the same server because
pubsub commands do not work reliably if it talks to a random server in the cluster.

	Better result callbacks and node routing support. No more ugly decorators.

	Fix keyslot command when using non ascii characters.

	Add bitpos support, redis-py 2.10.2 or higher required.

	Fixed a bug where vagrant users could not build the package via shared folder.

	Better support for CLUSTERDOWN error. (Neuront)

	Parallel pipeline execution using threads. (72squared)

	Added vagrant support for testing and development. (72squared)

	Improve stability of client during resharding operations (72squared)

0.1.0 (Sep 29, 2014)

	Initial release

	First release uploaded to pypi

Project Authors

Added in the order they contributed.

If you are mentioned in this document and want your row changed for any reason, open a new PR with changes.

Lead author and maintainer: Grokzen - https://github.com/Grokzen

Authors who contributed code or testing:

	Dobrite - https://github.com/dobrite

	72squared - https://github.com/72squared

	Neuron Teckid - https://github.com/neuront

	iandyh - https://github.com/iandyh

	mumumu - https://github.com/mumumu

	awestendorf - https://github.com/awestendorf

	Ali-Akber Saifee - https://github.com/alisaifee

	etng - https://github.com/etng

	gmolight - https://github.com/gmolight

	baranbartu - https://github.com/baranbartu

	monklof - https://github.com/monklof

	dutradda - https://github.com/dutradda

	AngusP - https://github.com/AngusP

	Doug Kent - https://github.com/dkent

	VascoVisser - https://github.com/VascoVisser

	astrohsy - https://github.com/astrohsy

	Artur Stawiarski - https://github.com/astawiarski

	Matthew Anderson - https://github.com/mc3ander

	Appurv Jain - https://github.com/appurvj

Licensing

Copyright (c) 2013-2020 Johan Andersson

MIT (See docs/License.txt file)

The license should be the same as redis-py (https://github.com/andymccurdy/redis-py)

Disclaimer

Both Redis cluster and redis-py-cluster is considered stable and production ready.

But this depends on what you are going to use clustering for. In the simple use cases with SET/GET and other single key functions there is not issues. If you require multi key functionality or pipelines then you must be very careful when developing because they work slightly different from the normal redis server.

If you require advance features like pubsub or scripting, this lib and redis do not handle that kind of use-cases very well. You either need to develop a custom solution yourself or use a non clustered redis server for that.

Finally, this lib itself is very stable and I know of at least 2 companies that use this in production with high loads and big cluster sizes.

Index

 # Scripting support

Scripting support is limited to scripts that operate on keys in the same key slot.
If a script is executed via evalsha, eval or by calling the callable returned by
register_script and the keys passed as arguments do not map to the same key slot,
a RedisClusterException will be thrown.

It is however, possible to query a key within the script, that is not passed
as an argument of eval, evalsha. In this scenarios it is not possible to detect
the error early and redis itself will raise an error which will be percolated
to the user. For example:


	```python

	cluster = RedisCluster(‘localhost’, 7000)
script = “””
return redis.call(‘GET’, KEYS[1]) * redis.call(‘GET’, ARGV[1])
“””
# this will succeed
cluster.eval(script, 1, “A{Foo}”, “A{Foo}”)
# this will fail as “A{Foo}” and “A{Bar}” are on different key slots.
cluster.eval(script, 1, “A{Foo}”, “A{Bar}”)





```

Unsupported operations

	The SCRIPT KILL command is not yet implemented.

	Scripting in the context of a pipeline is not yet implemented.

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to redis-py-cluster’s documentation!

 		
 RedisCluster client configuration options

 		
 Host port remapping

 		
 Implemented redis commands in RedisCluster

 		
 Cluster

 		
 Connection

 		
 Geo

 		
 Hashes

 		
 Hyperloglog

 		
 Keys/Generic

 		
 Lists

 		
 PubSub

 		
 Scripting

 		
 Server

 		
 Sets

 		
 Sorted Sets

 		
 Streams

 		
 Strings

 		
 Transactions

 		
 Sentinel

 		
 Limitations and differences

 		
 Pipelines

 		
 How pipelining works

 		
 Connection Error handling

 		
 The philosophy on pipelines

 		
 Packing Commands

 		
 Parallel execution of pipeline

 		
 Transactions and WATCH

 		
 MULTI/EXEC cluster test code

 		
 Different pipeline solutions

 		
 Suggestion one

 		
 Suggestion two

 		
 Suggestion three

 		
 Suggestion four

 		
 Pubsub

 		
 Scalability issues

 		
 How pubsub works in RedisCluster

 		
 Known limitations with pubsub

 		
 Other solutions

 		
 Readonly mode

 		
 Setup client logging

 		
 Redis cluster setup

 		
 Manually

 		
 Docker

 		
 Vagrant

 		
 Simple makefile

 		
 Benchmarks

 		
 Setup benchmarks

 		
 Implemented benchmarks

 		
 Run predefined benchmarks

 		
 Project status

 		
 Testing

 		
 Tox - Multi environment testing

 		
 Development

 		
 Documentation

 		
 Upgrading redis-py-cluster

 		
 2.0.0 –> 2.1.0

 		
 1.3.x –> 2.0.0

 		
 1.3.2 –> Next Release

 		
 1.3.1 –> 1.3.2

 		
 1.3.0 –> 1.3.1

 		
 1.2.0 –> Next release

 		
 1.1.0 –> 1.2.0

 		
 1.0.0 –> 1.1.0

 		
 0.2.0 –> 0.3.0

 		
 0.1.0 –> 0.2.0

 		
 Release Notes

 		
 2.1.0 (May **, 2020)

 		
 2.0.0 (Aug 12, 2019)

 		
 1.3.6 (Nov 16, 2018)

 		
 1.3.5 (July 22, 2018)

 		
 1.3.4 (Mar 5, 2017)

 		
 1.3.3 (Dec 15, 2016)

 		
 1.3.2 (Nov 27, 2016)

 		
 1.3.1 (Oct 13, 2016)

 		
 1.3.0 (Sep 11, 2016)

 		
 1.2.0 (Apr 09, 2016)

 		
 1.1.0 (Oct 27, 2015)

 		
 1.0.0 (Jun 10, 2015)

 		
 0.3.0 (Jun 9, 2015)

 		
 0.2.0 (Dec 26, 2014)

 		
 0.1.0 (Sep 29, 2014)

 		
 Project Authors

 		
 Licensing

 		
 Disclaimer

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

