
redis-py-cluster Documentation
Release 1.2.0

Johan Andersson

May 20, 2020

Contents

1 Installation 3

2 Usage example 5

3 Dependencies & supported python versions 7

4 Supported python versions 9

5 Regarding duplicate pypi and python naming 11

6 The Usage Guide 13
6.1 Implemented commands . 13
6.2 Limitations and differences . 16
6.3 Pipelines . 16
6.4 Threaded Pipeline . 22
6.5 Pubsub . 23
6.6 Readonly mode . 24
6.7 Redis cluster setup . 25
6.8 Benchmarks . 25

7 The Community Guide 27
7.1 Project status . 27
7.2 Testing . 27
7.3 Upgrading redis-py-cluster . 27
7.4 Release Notes . 30
7.5 Project Authors . 34
7.6 Licensing . 35
7.7 Disclaimer . 35

i

ii

redis-py-cluster Documentation, Release 1.2.0

This project is a port of redis-rb-cluster by antirez, with alot of added functionality. The original source can be found
at https://github.com/antirez/redis-rb-cluster.

The source code is available on github.

Contents 1

https://github.com/antirez/redis-rb-cluster
http://github.com/grokzen/redis-py-cluster

redis-py-cluster Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Installation

Latest stable release from pypi

$ pip install redis-py-cluster

or from source code

$ python setup.py install

3

redis-py-cluster Documentation, Release 1.2.0

4 Chapter 1. Installation

CHAPTER 2

Usage example

Small sample script that shows how to get started with RedisCluster. It can also be found in the file exmaples/basic.py

>>> from rediscluster import StrictRedisCluster

>>> # Requires at least one node for cluster discovery. Multiple nodes is recommended.
>>> startup_nodes = [{"host": "127.0.0.1", "port": "7000"}]

>>> # Note: See note on Python 3 for decode_responses behaviour
>>> rc = StrictRedisCluster(startup_nodes=startup_nodes, decode_responses=True)

>>> rc.set("foo", "bar")
True
>>> print(rc.get("foo"))
'bar'

Note: Python 3

Since Python 3 changed to Unicode strings from Python 2’s ASCII, the return type of most commands will be binary
strings, unless the class is instantiated with the option decode_responses=True. In this case, the responses will
be Python 3 strings (Unicode). For the init argument decode_responses, when set to False, redis-py-cluster will not
attempt to decode the responses it receives. In Python 3, this means the responses will be of type bytes. In Python 2,
they will be native strings (str). If decode_responses is set to True, for Python 3 responses will be str, for Python 2
they will be unicode.

5

redis-py-cluster Documentation, Release 1.2.0

6 Chapter 2. Usage example

CHAPTER 3

Dependencies & supported python versions

• Python: redis >= 2.10.2, <= 2.10.5 is required. Older versions in the 2.10.x series can work but using the latest
one is allways recommended.

• Optional Python: hiredis >= 0.2.0. Older versions might work but is not tested.

• A working Redis cluster based on version >= 3.0.0 is required. Only 3.0.x releases is supported.

7

redis-py-cluster Documentation, Release 1.2.0

8 Chapter 3. Dependencies & supported python versions

CHAPTER 4

Supported python versions

• 2.7

• 3.3

• 3.4.1+ (See note)

• 3.5

• 3.6

Experimental:

• 3.7-dev

Note: Python 3.4.0

A segfault was found when running redis-py in python 3.4.0 that was introduced into the codebase in python 3.4.0.
Because of this both redis-py and redis-py-cluster will not work when running with 3.4.0. This lib has decided to
block the lib from execution on 3.4.0 and you will get a exception when trying to import the code. The only solution
is to use python 3.4.1 or some other higher minor version in the 3.4 series.

9

redis-py-cluster Documentation, Release 1.2.0

10 Chapter 4. Supported python versions

CHAPTER 5

Regarding duplicate pypi and python naming

It has been found that the python module name that is used in this library (rediscluster) is already shared with a similar
but older project.

This lib will not change the naming of the module to something else to prevent collisions between the libs.

My reasoning for this is the following

• Changing the namespace is a major task and probably should only be done in a complete rewrite of the lib, or if
the lib had plans for a version 2.0.0 where this kind of backwards incompatibility could be introduced.

• This project is more up to date, the last merged PR in the other project was 3 years ago.

• This project is aimed for implement support for the cluster support in 3.0+, the other lib do not have that right
now, but they implement almost the same cluster solution as the 3.0+ but in much more in the client side.

• The 2 libs is not compatible to be run at the same time even if the name would not collide. It is not recommended
to run both in the same python interpreter.

An issue has been raised in each repository to have tracking of the problem.

redis-py-cluster: https://github.com/Grokzen/redis-py-cluster/issues/150

rediscluster: https://github.com/salimane/rediscluster-py/issues/11

11

https://github.com/Grokzen/redis-py-cluster/issues/150
https://github.com/salimane/rediscluster-py/issues/11

redis-py-cluster Documentation, Release 1.2.0

12 Chapter 5. Regarding duplicate pypi and python naming

CHAPTER 6

The Usage Guide

6.1 Implemented commands

This will describe all changes that StrictRedisCluster have done to make a command to work in a cluster environment.

If a command is not listed here then the default implementation from StrictRedis in the redis-py library is used.

6.1.1 Fanout Commands

The following commands will send the same request to all nodes in the cluster. Results is returned as a dict with k,v
pair (NodeID, Result).

• bgrewriteaof

• bgsave

• client_getname

• client_kill

• client_list

• client_setname

• config_get

• config_resetstat

• config_rewrite

• config_set

• dbsize

• echo

• info

• lastsave

13

redis-py-cluster Documentation, Release 1.2.0

• ping

• save

• slowlog_get

• slowlog_len

• slowlog_reset

• time

The pubsub commands are sent to all nodes, and the resulting replies are merged together. They have an optional
keyword argument aggregate which when set to False will return a dict with k,v pair (NodeID, Result) instead of the
merged result.

• pubsub_channels

• pubsub_numsub

• pubsub_numpat

This command will send the same request to all nodes in the cluster in sequence. Results is appended to a unified list.

• keys

The following commands will only be send to the master nodes in the cluster. Results is returned as a dict with k,v
pair (NodeID, Command-Result).

• flushall

• flushdb

• scan

This command will sent to a random node in the cluster.

• publish

The following commands will be sent to the server that matches the first key.

• eval

• evalsha

This following commands will be sent to the master nodes in the cluster.

• script load - the result is the hash of loaded script

• script flush - the result is True if the command succeeds on all master nodes, else False

• script exists - the result is an array of booleans. An entry is True only if the script exists on all the master nodes.

The following commands will be sent to the sever that matches the specefied key.

• hscan

• hscan_iter

• scan_iter

• sscan

• sscan_iter

• zscan

• zscan_iter

14 Chapter 6. The Usage Guide

redis-py-cluster Documentation, Release 1.2.0

6.1.2 Blocked commands

The following commands is blocked from use.

Either because they do not work, there is no working implementation or it is not good to use them within a cluster.

• bitop - Currently to hard to implement a solution in python space

• client_setname - Not yet implemented

• move - It is not possible to move a key from one db to another in cluster mode

• restore

• script_kill - Not yet implemented

• sentinel

• sentinel_get_master_addr_by_name

• sentinel_master

• sentinel_masters

• sentinel_monitor

• sentinel_remove

• sentinel_sentinels

• sentinel_set

• sentinel_slaves

• shutdown

• slaveof - Cluster management should be done via redis-trib.rb manually

• unwatch - Not yet implemented

• watch - Not yet implemented

6.1.3 Overridden methods

The following methods is overridden from StrictRedis with a custom implementation.

They can operate on keys that exists in different hashslots and require a client side implementation to work.

• brpoplpus

• mget

• mset

• msetnx

• pfmerge

• randomkey

• rename

• renamenx

• rpoplpush

• sdiff

6.1. Implemented commands 15

redis-py-cluster Documentation, Release 1.2.0

• sdiffstore

• sinter

• sinterstore

• smove

• sort

• sunion

• sunionstore

• zinterstore

• zunionstore

6.2 Limitations and differences

This will compare against redis-py

There is alot of differences that have to be taken into consideration when using redis cluster.

Any method that can operate on multiple keys have to be reimplemented in the client and in some cases that is not
possible to do. In general any method that is overriden in StrictRedisCluster have lost the ability of being atomic.

Pipelines do not work the same way in a cluster. In StrictRedis it batch all commands so that they can be executed at
the same time when requested. But with RedisCluster pipelines will send the command directly to the server when it
is called, but it will still store the result internally and return the same data from .execute(). This is done so that the
code still behaves like a pipeline and no code will break. A better solution will be implemented in the future.

Alot of methods will behave very different when using RedisCluster. Some methods send the same request to all
servers and return the result in another format then StrictRedis do. Some methods is blocked because they do not work
/ is not implemented / is dangerous to use in redis cluster.

Some of the commands are only partially supported when using RedisCluster. The commands zinterstore and
zunionstore are only supported if all the keys map to the same key slot in the cluster. This can be achieved by
namespacing related keys with a prefix followed by a bracketed common key. Example:

r.zunionstore('d{foo}', ['a{foo}', 'b{foo}', 'c{foo}'])

This corresponds to how redis behaves in cluster mode. Eventually these commands will likely be more fully supported
by implementing the logic in the client library at the expense of atomicity and performance.

6.3 Pipelines

6.3.1 How pipelining works

In redis-py-cluster, pipelining is all about trying to achieve greater network efficiency. Transaction support is disabled
in redis-py-cluster. Use pipelines to avoid extra network round-trips, not to ensure atomicity.

Just like in redis-py, redis-py-cluster queues up all the commands inside the client until execute is called. But, once
execute is called, redis-py-cluster internals work slightly differently. It still packs the commands to efficiently transmit
multiple commands across the network. But since different keys may be mapped to different nodes, redis-py-cluster
must first map each key to the expected node. It then packs all the commands destined for each node in the cluster into
its own packed sequence of commands. It uses the redis-py library to communicate with each node in the cluster.

16 Chapter 6. The Usage Guide

redis-py-cluster Documentation, Release 1.2.0

Ideally all the commands should be sent to each node in the cluster in parallel so that all the commands can be
processed as fast as possible. We do this by first writing all of the commands to the sockets sequentially before reading
any of the responses. This allows us to parallelize the network i/o without the overhead of managing python threads.

In previous versions of the library there were some bugs associated with pipelining operations. In an effort to simplify
the logic and lessen the likelihood of bugs, if we get back connection errors, MOVED errors, ASK errors or any other
error that can safely be retried, we fall back to sending these remaining commands sequentially to each individual
node just as we would in a normal redis call. We still buffer the results inside the pipeline response so there will be
no change in client behavior. During normal cluster operations, pipelined commands should work nearly efficiently as
pipelined commands to a single instance redis. When there is a disruption to the cluster topography, like when keys are
being resharded, or when a slave takes over for a master, there will be a slight loss of network efficiency. Commands
that are rejected by the server are tried one at a time as we rebuild the slot mappings. Once the slots table is rebuilt
correctly (usally in a second or so), the client resumes efficient networking behavior. We felt it was more important to
prioritize correctness of behavior and reliable error handling over networking efficiency for the rare cases where the
cluster topography is in flux.

6.3.2 Connection Error handling

The other way pipelines differ in redis-py-cluster from redis-py is in error handling and retries. With the normal
redis-py client, if you hit a connection error during a pipeline command it raises the error right there. But we expect
redis-cluster to be more resilient to failures.

If you hit a connection problem with one of the nodes in the cluster, most likely a stand-by slave will take over for the
down master pretty quickly. In this case, we try the commands bound for that particular node to another random node.
The other random node will not just blindly accept these commands. It only accepts them if the keys referenced in
those commands actually map to that node in the cluster configuration.

Most likely it will respond with a MOVED error telling the client the new master for those commands. Our code
handles these MOVED commands according to the redis cluster specification and re-issues the commands to the
correct server transparently inside of pipeline.execute() method. You can disable this behavior if you’d like as well.

ASKED and MOVED errors

The other tricky part of the redis-cluster specification is that if any command response comes back with an ASK or
MOVED error, the command is to be retried against the specified node.

In previous versions of redis-py-cluster treated ASKED and MOVED errors the same, but they really need to be handled
differently. MOVED error means that the client can safely update its own representation of the slots table to point to a
new node for all future commands bound for that slot.

An ASK error means the slot is only partially migrated and that the client can only successfully issue that command
to the new server if it prefixes the request with an ‘ASKING¨ ‘ command first. This lets the new node taking over that
slot know that the original server said it was okay to run that command for the given key against the new node even
though the slot is not yet completely migrated. Our current implementation now handles this case correctly.

6.3.3 The philosophy on pipelines

After playing around with pipelines and thinking about possible solutions that could be used in a cluster setting this
document will describe how pipelines work, strengths and weaknesses of the implementation that was chosen.

Why can’t we reuse the pipeline code in redis-py? In short it is almost the same reason why code from the normal
redis client can’t be reused in a cluster environment and that is because of the slots system. Redis cluster consist of a
number of slots that is distributed across a number of servers and each key belongs in one of these slots.

In the normal pipeline implementation in redis-py we can batch send all the commands and send them to the server at
once, thus speeding up the code by not issuing many requests one after another. We can say that we have defined and
guaranteed execution order becuase of this.

6.3. Pipelines 17

redis-py-cluster Documentation, Release 1.2.0

One problem that appears when you want to do pipelines in a cluster environment is that you can’t have guaranteed
execution order in the same way as a single server pipeline. The problem is that because you can queue a command
to any key, we will end up in most of the cases having to talk to 2 or more nodes in the cluster to execute the pipeline.
The problem with that is that there is no single place/node/way to send the pipeline and redis will sort everything out
by itself via some internal mechanisms. Because of that when we build a pipeline for a cluster we have to build several
smaller pipelines that we each send to the designated node in the cluster.

When the pipeline is executed in the client each key is checked to what slot it should be sent to and the pipeline is
built up based on that information. One thing to note here is that there will be partial correct execution order if you
look over the entire cluster because for each pipeline the ordering will be correct. It can also be argued that the correct
execution order is applied/valid for each slot in the cluster.

The next thing to take into consideration is what commands should be available and which should be blocked/locked.

In most cases and in almost all solutions multi key commands have to be blocked hard from being executed inside a
pipeline. This would only be possible in the case you have a pipeline implementation that always executes immediately
each command is queued up. That solution would only give the interface of working like a pipeline to ensure old code
will still work, but it would not give any benefits or advantages other than all commands would work and old code
would work.

In the solution for this lib multikey commands are blocked hard and will probably not be enabled in pipelines. If you
really need to use them you need to execute them through the normal cluster client if they are implemented and work
in there. Why can’t multi key commands work? In short again it is because the keys can live in different slots on
different nodes in the cluster. It is possible in theory to have any command work in a cluster, but only if the keys
operated on belong to the same cluster slot. This lib have decided that currently no serious support for that will be
attempted.

Examples on commands that do not work is MGET, MSET, MOVE.

One good thing that comes out of blocking multi key commands is that correct execution order is less of a problem
and as long as it applies to each slot in the cluster we shold be fine.

Consider the following example. Create a pipeline and issue 6 commands A, B, C, D, E, F and then execute it. The
pipeline is calculated and 2 sub pipelines is created with A, C, D, F in the first and B, E in the second. Both pipelines
are then sent to each node in the cluster and a response is sent back. For the first node [True, MovedException(12345),
MovedException(12345), True] and from the second node [True, True]. After this response is parsed we see that 2
commands in the first pipeline did not work and must be sent to another node. This case happens if the client slots
cache is wrong because a slot was migrated to another node in the cluster. After parsing the response we then build a
third pipeline object with commands [C, D] to the second node. The third object is executed and passes and from the
client perspective the entire pipeline was executed.

If we look back at the order we executed the commands we get [A, F] for the first node and [B, E, C, D] for the second
node. At first glance this looks like it is out of order because command E is executed before C & D. Why is this not
matter? Because no multi key operations can be done in a pipeline, we only have to care the execution order is correct
for each slot and in this case it was because B & E belongs to the same slot and C & D belongs to the same slot. There
should be no possible way to corrupt any data between slots if multi key commands are blocked by the code.

What is good with this pipeline solution? First we can actually have a pipeline solution that will work in most
cases with few commands blocked (only multi key commands). Secondly we can run it in parallel to increase the
performance of the pipeline even further, making the benefits even greater.

6.3.4 Packing Commands

When issuing only a single command, there is only one network round trip to be made. But what if you issue 100
pipelined commands? In a single-instance redis configuration, you still only need to make one network hop. The
commands are packed into a single request and the server responds with all the data for those requests in a single
response. But with redis cluster, those keys could be spread out over many different nodes.

18 Chapter 6. The Usage Guide

redis-py-cluster Documentation, Release 1.2.0

The client is responsible for figuring out which commands map to which nodes. Let’s say for example that your 100
pipelined commands need to route to 3 different nodes? The first thing the client does is break out the commands that
go to each node, so it only has 3 network requests to make instead of 100.

6.3.5 Transactions and WATCH

Support for transactions and WATCH:es in pipelines. If we look on the entire pipeline across all nodes in the cluster
there is no possible way to have a complete transaction across all nodes because if we need to issue commands to 3
servers, each server is handled by its own and there is no way to tell other nodes to abort a transaction if only one of
the nodes fail but not the others. A possible solution for that could be to implement a 2 step commit process. The 2
steps would consist of building 2 batches of commands for each node where the first batch would consist of validating
the state of each slot that the pipeline wants to operate on. If any of the slots is migrating or moved then the client can
correct its slots cache and issue a more correct pipeline batch. The second step would be to issue the actual commands
and the data would be commited to redis. The big problem with this is that 99% of the time this would work really
well if you have a very stable cluster with no migrations/resharding/servers down. But there can be times where a
slot has begun migration in between the 2 steps of the pipeline and that would cause a race condition where the client
thinks it has corrected the pipeline and wants to commit the data but when it does it will still fail.

Why MULTI/EXEC support won’t work in a cluster environment. There is some test code in the second MULTI/EXEC
cluster test code of this document that tests if MULTI/EXEC is possible to use in a cluster pipeline. The test shows a
huge problem when errors occur. If we wrap MULTI/EXEC in a packed set of commands then if a slot is migrating
we will not get a good error we can parse and use. Currently it will only report True or False so we can narrow down
what command failed but not why it failed. This might work really well if used on a non clustered node becuase it
does not have to take care of ASK or MOVED errors. But for a cluster we need to know what cluster error occured so
the correct action to fix the problem can be taken. Since there is more then 1 error to take care of it is not possible to
take action based on just True or False.

Because of this problem with error handling MULTI/EXEC is blocked hard in the code from being used in a pipeline
because the current implementation can’t handle the errors.

In theory it could be possible to design a pipeline implementation that can handle this case by trying to determine by
itself what it should do with the error by either asking the cluster after a False value was found in the response about
the current state of the slot or just default to MOVED error handling and hope for the best. The problem is that this is
not 100% guaranteed to work and can easily cause problems when wrong action was taken on the response.

Currently WATCH requires more studying is it possible to use or not, but since it is tied into MULTI/EXEC pattern it
probably will not be supported for now.

6.3.6 MULTI/EXEC cluster test code

This code does NOT wrap MULTI/EXEC around the commands when packed

>>> from rediscluster import StrictRedisCluster as s
>>> r = s(startup_nodes=[{"host": "127.0.0.1", "port": "7002"}])
>>> # Simulate that a slot is migrating to another node
>>> r.connection_pool.nodes.slots[14226] = {'host': '127.0.0.1', 'server_type':
→˓'master', 'port': 7001, 'name': '127.0.0.1:7001'}
>>> p = r.pipeline()
>>> p.command_stack = []
>>> p.command_stack.append((["SET", "ert", "tre"], {}))
>>> p.command_stack.append((["SET", "wer", "rew"], {}))
>>> p.execute()

ClusterConnection<host=127.0.0.1,port=7001>
[True, ResponseError('MOVED 14226 127.0.0.1:7002',)]

(continues on next page)

6.3. Pipelines 19

redis-py-cluster Documentation, Release 1.2.0

(continued from previous page)

ClusterConnection<host=127.0.0.1,port=7002>
[True]

This code DO wrap MULTI/EXEC around the commands when packed

>>> from rediscluster import StrictRedisCluster as s
>>> r = s(startup_nodes=[{"host": "127.0.0.1", "port": "7002"}])
>>> # Simulate that a slot is migrating to another node
>>> r.connection_pool.nodes.slots[14226] = {'host': '127.0.0.1', 'server_type':
→˓'master', 'port': 7001, 'name': '127.0.0.1:7001'}
>>> p = r.pipeline()
>>> p.command_stack = []
>>> p.command_stack.append((["SET", "ert", "tre"], {}))
>>> p.command_stack.append((["SET", "wer", "rew"], {}))
>>> p.execute()
ClusterConnection<host=127.0.0.1,port=7001>
[True, False]

6.3.7 Different pipeline solutions

This section will describe different types of pipeline solutions. It will list their main benefits and weaknesses.

Note: This section is mostly random notes and thoughts and not that well written and cleaned up right now. It will be
done at some point in the future.

Suggestion one

Simple but yet sequential pipeline. This solution acts more like an interface for the already existing pipeline imple-
mentation and only provides a simple backwards compatible interface to ensure that code that sexists still will work
withouth any major modifications. The good this with this implementation is that because all commands is runned in
sequence it will handle MOVED or ASK redirections very good and withouth any problems. The major downside to
this solution is that no command is ever batched and ran in parallel and thus you do not get any major performance
boost from this approach. Other plus is that execution order is preserved across the entire cluster but a major downside
is that thte commands is no longer atomic on the cluster scale because they are sent in multiple commands to different
nodes.

Good

• Sequential execution of the entire pipeline

• Easy ASK or MOVED handling

Bad

• No batching of commands aka. no execution speedup

Suggestion two

Current pipeline implementation. This implementation is rather good and works well because it combines the existing
pipeline interface and functionality and it also provides a basic handling of ASK or MOVED errors inside the client.
One major downside to this is that execution order is not preserved across the cluster. Although the execution order
is somewhat broken if you look at the entire cluster level because commands can be split so that cmd1, cmd3, cmd5

20 Chapter 6. The Usage Guide

redis-py-cluster Documentation, Release 1.2.0

get sent to one server and cmd2, cmd4 gets sent to another server. The order is then broken globally but locally for
each server it is preserved and maintained correctly. On the other hand I guess that there can’t be any commands
that can affect different hashslots within the same command so maybe it really doesn’t matter if the execution order
is not correct because for each slot/key the order is valid. There might be some issues with rebuilding the correct
response ordering from the scattered data because each command might be in different sub pipelines. But I think that
our current code still handles this correctly. I think I have to figure out some weird case where the execution order
actually matters. There might be some issues with the nonsupported mget/mset commands that acctually performs
different sub commands then it currently supports.

Good

• Sequential execution per node

Bad

• Non sequential execution on the entire pipeline

• Medium difficult ASK or MOVED handling

Suggestion three

There is a even simpler form of pipelines that can be made where all commands is supported as long as they conform
to the same hashslot because REDIS supports that mode of operation. The good thing with this is that since all keys
must belong to the same slot there can’t be very few ASK or MOVED errors that happens and if they happen they
will be very easy to handle because the entire pipeline is kinda atomic because you talk to the same server and only 1
server. There can’t be any multiple server communication happening.

Good

• Super simple ASK or MOVED handling

• Sequential execution per slot and through the entire pipeline

Bad

• Single slot per pipeline

Suggestion four

One other solution is the 2 step commit solution where you send for each server 2 batches of commands. The first
command should somehow establish that each keyslot is in the correct state and able to handle the data. After the
client have recieved OK from all nodes that all data slots is good to use then it will acctually send the real pipeline
with all data and commands. The big problem with this approach is that ther eis a gap between the checking of the
slots and the acctual sending of the data where things can happen to the already established slots setup. But at the same
time there is no possibility of merging these 2 steps because if step 2 is automatically runned if step 1 is Ok then the
pipeline for the first node that will fail will fail but for the other nodes it will suceed but when it should not because if
one command gets ASK or MOVED redirection then all pipeline objects must be rebuilt to match the new specs/setup
and then reissued by the client. The major advantage of this solution is that if you have total controll of the redis server
and do controlled upgrades when no clients is talking to the server then it can actually work really well because there
is no possibility that ASK or MOVED will triggered by migrations in between the 2 batches.

Good

• Still rather safe because of the 2 step commit solution

• Handles ASK or MOVED before commiting the data

Bad

• Big possibility of race conditions that can cause problems

6.3. Pipelines 21

redis-py-cluster Documentation, Release 1.2.0

6.4 Threaded Pipeline

Redis cluster optionally supports parallel execution of pipelined commands to reduce latency of pipelined requests via
threads.

6.4.1 Rationale

When pipelining a bunch of commands to the cluster, many of the commands may be routed to different nodes in the
cluster. The client-server design in redis-cluster dictates that the client communicates directly with each node in the
cluster rather than treating each node as a homogenous group.

The advantage to this design is that a smart client can communicate with the cluster with the same latency character-
istics as it might communicate with a single-instance redis cluster. But only if the client can communicate with each
node in parallel.

6.4.2 Parallel network i/o using threads

That’s pretty good. But we are still issuing those 3 network requests in serial order. The code loops through each node
and issues a request, then gets the response, then issues the next one.

We improve the situation by using python threads, making each request in parallel over the network. Now we are only
as slow as the slowest single request.

Disabling Threads You can disable threaded execution either in the class constructor:

r = rediscluster.StrictRedisCluster(... pipeline_use_threads=False) #true by default
pipe = r.pipeline()

Or you can disable it on a case by case basis as you instantiate the pipeline object.

pipe = r.pipeline(use_threads=False)

The later example always overrides if explicitly set. Otherwise, it falls back on the value passed to the StrictRedis-
Cluster constructor.

6.4.3 Footnote: Gevent

Python offers something even more lightweight and efficient than threads to perform tasks in parallel: GEVENT.

You can read up more about gevent here: http://www.gevent.org/

If you want to try to get the benefits of gevent in redis-py-cluster, you can monkey patch your code with the following
lines at the very beginning of your application:

import os
os.environ["GEVENT_RESOLVER"] = "ares"
import gevent.monkey
gevent.monkey.patch_all()

This will patch the python socket code, threaded libraries, and dns resolution into a single threaded application substi-
tuting coroutines for parallel threads.

22 Chapter 6. The Usage Guide

http://www.gevent.org/

redis-py-cluster Documentation, Release 1.2.0

6.5 Pubsub

After testing pubsub in cluster mode one big problem was discovered with the PUBLISH command.

According to the current official redis documentation on PUBLISH:

Integer reply: the number of clients that received the message.

It was initially assumed that if we had clients connected to different nodes in the cluster it would still report back the
correct number of clients that recieved the message.

However after some testing of this command it was discovered that it would only report the number of clients that
have subscribed on the same server the PUBLISH command was executed on.

Because of this, if there is some functionality that relies on an exact and correct number of clients that listen/subscribed
to a specific channel it will be broken or behave wrong.

Currently the only known workarounds is to:

• Ignore the returned value

• All clients talk to the same server

• Use a non clustered redis server for pubsub operations

Discussion on this topic can be found here: https://groups.google.com/forum/?hl=sv#!topic/redis-db/BlwSOYNBUl8

6.5.1 Scalability issues

The following part is from this discussion https://groups.google.com/forum/?hl=sv#!topic/redis-db/B0_fvfDWLGM
and it describes the scalability issue that pubsub has and the performance that goes with it when used in a cluster
environment.

according to [1] and [2] PubSub works by broadcasting every publish to every other Redis Cluster node.
This limits the PubSub throughput to the bisection bandwidth of the underlying network infrastructure
divided by the number of nodes times message size. So if a typical message has 1KB, the cluster has 10
nodes and bandwidth is 1 GBit/s, throughput is already limited to 12.5K RPS. If we increase the message
size to 5 KB and the number of nodes to 50, we only get 500 RPS much less than a single Redis instance
could service (>100K RPS), while putting maximum pressure on the network. PubSub thus scales linearly
wrt. to the cluster size, but in the the negative direction!

6.5.2 How pubsub works in StrictRedisCluster

In release 1.2.0 the pubsub was code was reworked to now work like this.

For PUBLISH and SUBSCRIBE commands:

• The channel name is hashed and the keyslot is determined.

• Determine the node that handles the keyslot.

• Send the command to the node.

The old solution was that all pubsub connections would talk to the same node all the time. This would ensure that the
commands would work.

This new solution is probably future safe and it will probably be a similar solution when redis fixes the scalability
issues.

6.5. Pubsub 23

https://groups.google.com/forum/?hl=sv#!topic/redis-db/BlwSOYNBUl8
https://groups.google.com/forum/?hl=sv#!topic/redis-db/B0_fvfDWLGM

redis-py-cluster Documentation, Release 1.2.0

6.5.3 Known limitations with pubsub

Pattern subscribe and publish do not work properly because if we hash a pattern like fo* we will get a keyslot for that
string but there is a endless posiblity of channel names based on that pattern that we can’t know in advance. This
feature is not limited but the commands is not recommended to use right now.

The implemented solution will only work if other clients use/adopt the same behaviour. If some other client behaves
differently, there might be problems with PUBLISH and SUBSCRIBE commands behaving wrong.

6.5.4 Other solutions

The simplest solution is to have a seperate non clustered redis instance that you have a regular StrictRedis instance that
works with your pubsub code. It is not recommended to use pubsub until redis fixes the implementation in the server
itself.

6.6 Readonly mode

By default, Redis Cluster always returns MOVE redirection response on accessing slave node. You
can overcome this limitation [for scaling read with READONLY mode](http://redis.io/topics/cluster-spec#
scaling-reads-using-slave-nodes).

redis-py-cluster also implements this mode. You can access slave by passing readonly_mode=True to StrictRedisClus-
ter (or RedisCluster) constructor.

>>> from rediscluster import StrictRedisCluster
>>> startup_nodes = [{"host": "127.0.0.1", "port": "7000"}]
>>> rc = StrictRedisCluster(startup_nodes=startup_nodes, decode_responses=True)
>>> rc.set("foo16706", "bar")
>>> rc.set("foo81", "foo")
True
>>> rc_readonly = StrictRedisCluster(startup_nodes=startup_nodes, decode_
→˓responses=True, readonly_mode=True)
>>> rc_readonly.get("foo16706")
u'bar'
>>> rc_readonly.get("foo81")
u'foo'

We can use pipeline via readonly_mode=True object.

>>> with rc_readonly.pipeline() as readonly_pipe:
... readonly_pipe.get('foo81')
... readonly_pipe.get('foo16706')
... readonly_pipe.execute()
...
[u'foo', u'bar']

But this mode has some downside or limitations.

• It is possible that you cannot get the latest data from READONLY mode enabled object because Redis imple-
ments asynchronous replication.

• You MUST NOT use SET related operation with READONLY mode enabled object, otherwise you can
possibly get ‘Too many Cluster redirections’ error because we choose master and its slave nodes randomly.

• You should use get related stuff only.

24 Chapter 6. The Usage Guide

http://redis.io/topics/cluster-spec#scaling-reads-using-slave-nodes
http://redis.io/topics/cluster-spec#scaling-reads-using-slave-nodes

redis-py-cluster Documentation, Release 1.2.0

• Ditto with pipeline, otherwise you can get ‘Command # X (XXXX) of pipeline: MOVED’ error.

>>> rc_readonly = StrictRedisCluster(startup_nodes=startup_nodes, decode_
→˓responses=True, readonly_mode=True)
>>> # NO: This works in almost case, but possibly emits Too many Cluster redirections
→˓error...
>>> rc_readonly.set('foo', 'bar')
>>> # OK: You should always use get related stuff...
>>> rc_readonly.get('foo')

6.7 Redis cluster setup

6.7.1 Manually

• Redis cluster tutorial: http://redis.io/topics/cluster-tutorial

• Redis cluster specs: http://redis.io/topics/cluster-spec

• This video will describe how to setup and use a redis cluster: http://vimeo.com/63672368 (This video is outdated
but could server as a good tutorial/example)

6.7.2 Docker

A fully functional docker image can be found at https://github.com/Grokzen/docker-redis-cluster

See repo README for detailed instructions how to setup and run.

6.7.3 Vagrant

A fully functional vagrant box can be found at https://github.com/72squared/vagrant-redis-cluste

See repo README for detailed instructions how to setup and run.

6.7.4 Simple makefile

A simple makefile solution can be found at https://github.com/Grokzen/travis-redis-cluster

See repo README for detailed instructions how to setup.

6.8 Benchmarks

These are a few benchmarks that are designed to test specific parts of the code to demonstrate the performance differ-
ence between using this lib and the normal Redis client.

6.8.1 Setup benchmarks

Before running any benchmark you should install this lib in editable mode inside a virtualenv so it can import Stric-
tRedisCluster lib.

Install with

6.7. Redis cluster setup 25

http://redis.io/topics/cluster-tutorial
http://redis.io/topics/cluster-spec
http://vimeo.com/63672368
https://github.com/Grokzen/docker-redis-cluster
https://github.com/72squared/vagrant-redis-cluste
https://github.com/Grokzen/travis-redis-cluster

redis-py-cluster Documentation, Release 1.2.0

pip install -e .

You also need a few redis servers to test against. You must have one cluster with at least one node on port 7001 and
you must also have a non-clustered server on port 7007.

6.8.2 Implemented benchmarks

• simple.py, This benchmark can be used to measure a simple set and get operation chain. It also supports running
pipelines by adding the flag –pipeline.

6.8.3 Run predefined benchmarks

These are a set of predefined benchmarks that can be run to measure the performance drop from using this library.

To run the benchmarks run

make benchmark

Example output and comparison of different runmodes

26 Chapter 6. The Usage Guide

CHAPTER 7

The Community Guide

7.1 Project status

If you have a problem with the code or general questions about this lib, you can ping me inside the gitter channel that
you can find here https://gitter.im/Grokzen/redis-py-cluster and i will help you out with problems or usage of this lib.

As of release 1.0.0 this project will be considered stable and usable in production. If you are going to use redis cluster
in your project, you should read up on all documentation that you can find in the bottom of this Readme file. It will
contain usage examples and descriptions of what is and what is not implemented. It will also describe how and why
things work the way they do in this client.

On the topic about porting/moving this code into redis-py there is currently work over here https://github.com/
andymccurdy/redis-py/pull/604 that will bring cluster support based on this code. But my suggestion is that until
that work is completed that you should use this lib.

7.2 Testing

All tests are currently built around a 6 redis server cluster setup (3 masters + 3 slaves). One server must be using port
7000 for redis cluster discovery.

The easiest way to setup a cluster is to use either a Docker or Vagrant. They are both described in [Setup a redis cluster.
Manually, Docker & Vagrant](docs/Cluster_Setup.md).

7.2.1 Tox

To run all tests in all supported environments with tox read this [Tox multienv testing](docs/Tox.md)

7.3 Upgrading redis-py-cluster

This document describes what must be done when upgrading between different versions to ensure that code still works.

27

https://gitter.im/Grokzen/redis-py-cluster
https://github.com/andymccurdy/redis-py/pull/604
https://github.com/andymccurdy/redis-py/pull/604

redis-py-cluster Documentation, Release 1.2.0

7.3.1 1.3.2 –> Next Release

If you created the StrictRedisCluster (or RedisCluster) instance via the from_url method and were passing read-
only_mode to it, the connection pool created will now properly allow selecting read-only slaves from the pool. Previ-
ously it always used master nodes only, even in the case of readonly_mode=True. Make sure your code don’t attempt
any write commands over connections with readonly_mode=True.

7.3.2 1.3.1 –> 1.3.2

If your redis instance is configured to not have the CONFIG . . . commands enabled due to security reasons you need
to pass this into the client object skip_full_coverage_check=True. Benefits is that the client class no longer requires
the CONFIG . . . commands to be enabled on the server. Downsides is that you can’t use the option in your redis
server and still use the same feature in this client.

7.3.3 1.3.0 –> 1.3.1

Method scan_iter was rebuilt becuase it was broken and did not perform as expected. If you are using this method
you should be carefull with this new implementation and test it through before using it. The expanded testing for that
method indicates it should work without problems. If you find any issues with the new method please open a issue on
github.

A major refactoring was performed in the pipeline system that improved error handling and reliability of execution.
It also simplified the code alot to make it easier to understand and continue to develop in the future. Becuase of this
major refactoring you should really test throuhg your pipeline code to ensure that none of your code is broken because
of this refactoring.

7.3.4 1.2.0 –> Next release

Class RedisClusterMgt has been removed. You should use the CLUSTER . . . methods that exists in the StrictRedis-
Cluster client class.

Method cluster_delslots changed argument specification from self, node_id, *slots to self, *slots and changed the
behaviour of the method to now automatically determine the slot_id based on the current cluster structure and where
each slot that you want to delete is loated.

Method pfcount no longer has custom logic and exceptions to prevent CROSSSLOT errors. If method is used with
different slots then a regular CROSSSLOT error (rediscluster.exceptions.ClusterCrossSlotError) will be returned.

7.3.5 1.1.0 –> 1.2.0

Discontinue passing pipeline_use_threads flag to rediscluster.StrictRedisCluster or rediscluster.RedisCluster.

Also discontinue passing use_threads flag to the pipeline() method.

In 1.1.0 and prior, you could use pipeline_use_threads flag to tell the client to perform queries to the different nodes
in parallel via threads. We exposed this as a flag because using threads might have been risky and we wanted people
to be able to disable it if needed.

With this release we figured out how to get parallelization of the commands without the need for threads. We write to
all the nodes before reading from them, essentially multiplexing the connections (but without the need for complicated
socket multiplexing). We found this approach to be faster and more scalable as more nodes are added to the cluster.

That means we don’t need the pipeline_use_threads flag anymore, or the use_threads flag that could be passed into
the instantiation of the pipeline object itself.

28 Chapter 7. The Community Guide

redis-py-cluster Documentation, Release 1.2.0

The logic is greatly simplified and the default behavior will now come with a performance boost and no need to use
threads.

Publish and subscribe no longer connects to a single instance. It now hashes the channel name and uses that to
determine what node to connect to. More work will be done in the future when redis-server improves the pubsub
implementation. Please read up on the documentation about pubsub in the docs/pubsub.md file about the problems
and limitations on using a pubsub in a cluster.

Commands Publish and Subscribe now uses the same connections as any other commands. If you are using any pubsub
commands you need to test it through thoroughly to ensure that your implementation still works.

To use less strict cluster slots discovery you can add the following config to your redis-server config file “cluster-
require-full-coverage=no” and this client will honour that setting and not fail if not all slots is covered.

A bug was fixed in ‘sdiffstore’, if you are using this, verify that your code still works as expected.

Class RedisClusterMgt is now deprecated and will be removed in next release in favor of all cluster commands imple-
mented in the client in this release.

7.3.6 1.0.0 –> 1.1.0

The following exceptions have been changed/added and code that use this client might have to be updated to handle
the new classes.

raise RedisClusterException(“Too many Cluster redirections”) have been changed to raise ClusterError(‘TTL ex-
hausted.’)

ClusterDownException have been replaced with ClusterDownError

Added new AskError exception class.

Added new TryAgainError exception class.

Added new MovedError exception class.

Added new ClusterCrossSlotError exception class.

Added optional max_connections_per_node parameter to ClusterConnectionPool which changes behavior of
max_connections so that it applies per-node rather than across the whole cluster. The new feature is opt-in, and
the existing default behavior is unchanged. Users are recommended to opt-in as the feature fixes two important prob-
lems. First is that some nodes could be starved for connections after max_connections is used up by connecting to
other nodes. Second is that the asymmetric number of connections across nodes makes it challenging to configure file
descriptor and redis max client settings.

Reinitialize on MOVED errors will not run on every error but instead on every 25 error to avoid excessive cluster
reinitialize when used in multiple threads and resharding at the same time. If you want to go back to the old behaviour
with reinitialize on every error you should pass in reinitialize_steps=1 to the client constructor. If you want to increase
or decrease the intervall of this new behaviour you should set reinitialize_steps in the client constructor to a value that
you want.

Pipelines in general have recieved alot of attention so if you are using pipelines in your code, ensure that you test the
new code out alot before using it to make sure it still works as you expect.

The entire client code should now be safer to use in a threaded environment. Some race conditions was found and
have now been fixed and it should prevent the code from behaving wierd during reshard operations.

7.3.7 0.2.0 –> 0.3.0

In 0.3.0 release the name of the client class was changed from RedisCluster to StrictRedisCluster and a new imple-
mentation of RedisCluster was added that is based on redis.Redis class. This was done to enable implementation a

7.3. Upgrading redis-py-cluster 29

redis-py-cluster Documentation, Release 1.2.0

cluster enabled version of redis.Redis class.

Because of this all imports and usage of RedisCluster must be changed to StrictRedisCluster so that existing code will
remain working. If this is not done some issues could arise in existing code.

7.3.8 0.1.0 –> 0.2.0

No major changes was done.

7.4 Release Notes

7.4.1 1.3.6 (Nov 16, 2018)

• Pin upstream redis-py package to release 2.10.6 to avoid issues with incompatible version 3.0.0

7.4.2 1.3.5 (July 22, 2018)

• Add Redis 4 compatability fix to CLUSTER NODES command (See issue #217)

• Fixed bug with command “CLUSTER GETKEYSINSLOT” that was throwing exceptions

• Added new methods cluster_get_keys_in_slot() to client

• Fixed bug with StrictRedisCluster.from_url that was ignoring the readonly_mode parameter

• NodeManager will now ignore nodes showing cluster errors when initializing the cluster

• Fix bug where RedisCluster wouldn’t refresh the cluster table when executing commands on specific nodes

• Add redis 5.0 to travis-ci tests

• Change default redis version from 3.0.7 to 4.0.10

• Increase accepted ranges of dependencies specefied in dev-requirements.txt

• Several major and minor documentation updates and tweaks

• Add example script “from_url_password_protected.py”

• command “CLUSTER GETKEYSINSLOT” is now returned as a list and not int

• Improve support for ssl connections

• Retry on Timeout errors when doing cluster discovery

• Added new error class “MasterDownError”

• Updated requirements for dependency of redis-py to latest version

7.4.3 1.3.4 (Mar 5, 2017)

• Package is now built as a wheel and source package when releases is built.

• Fixed issues with some key types in NodeManager.keyslot().

• Add support for PUBSUB subcommands CHANNELS, NUMSUB [arg] [args. . .] and NUMPAT.

• Add method set_result_callback(command, callback) allowing the default reply callbacks to be changed, in the
same way set_response_callback(command, callback) inherited from Redis-Py does for responses.

30 Chapter 7. The Community Guide

redis-py-cluster Documentation, Release 1.2.0

• Node manager now honors defined max_connections variable so connections that is emited from that class uses
the same variable.

• Fixed a bug in cluster detection when running on python 3.x and decode_responses=False was used. Data back
from redis for cluster structure is now converted no matter what the data you want to set/get later is using.

• Add SSLClusterConnection for connecting over TLS/SSL to Redis Cluster

• Add new option to make the nodemanager to follow the cluster when nodes move around by avoiding to query
the original list of startup nodes that was provided when the client object was first created. This could make the
client handle drifting clusters on for example AWS easier but there is a higher risk of the client talking to the
wrong group of nodes during split-brain event if the cluster is not consistent. This feature is EXPERIMENTAL
and use it with care.

7.4.4 1.3.3 (Dec 15, 2016)

• Remove print statement that was faulty commited into release 1.3.2 that case logs to fill up with unwanted data.

7.4.5 1.3.2 (Nov 27, 2016)

• Fix a bug where from_url was not possible to use without passing in additional variables. Now it works as
the same method from redis-py. Note that the same rules that is currently in place for passing ip addresses/dns
names into startup_nodes variable apply the same way through the from_url method.

• Added options to skip full coverage check. This flag is useful when the CONFIG redis command is disabled by
the server.

• Fixed a bug where method CLUSTER SLOTS would break in newer redis versions where node id is included in
the reponse. Method is not compatible with both old and new redis versions.

7.4.6 1.3.1 (Oct 13, 2016)

• Rebuilt broken method scan_iter. Previous tests was to small to detect the problem but is not corrected to work
on a bigger dataset during the test of that method. (korvus81, Grokzen, RedWhiteMiko)

• Errors in pipeline that should be retried, like connection errors, moved, errors and ask errors now fall back to
single operation logic in StrictRedisCluster.execute_command. (72squared).

• Moved reinitialize_steps and counter into nodemanager so it can be correctly counted across pipeline operations
(72squared).

7.4.7 1.3.0 (Sep 11, 2016)

• Removed RedisClusterMgt class and file

• Fixed a bug when using pipelines with RedisCluster class (Ozahata)

• Bump redis-server during travis tests to 3.0.7

• Added docs about same module name in another python redis cluster project.

• Fix a bug when a connection was to be tracked for a node but the node either do not yet exists or was removed
because of resharding was done in another thread. (ashishbaghudana)

• Fixed a bug with “CLUSTER . . . ” commands when a node_id argument was needed and the return type was
supposed to be converted to bool with bool_ok in redis._compat.

7.4. Release Notes 31

redis-py-cluster Documentation, Release 1.2.0

• Add back gitter chat room link

• Add new client commands - cluster_reset_all_nodes

• Command cluster_delslots now determines what cluster shard each slot is on and sends each slot deletion com-
mand to the correct node. Command have changed argument spec (Read Upgrading.rst for details)

• Fixed a bug when hashing the key it if was a python 3 byte string and it would cause it to route to wrong slot in
the cluster (fossilet, Grokzen)

• Fixed a bug when reinitialize the nodemanager it would use the old nodes_cache instead of the new one that was
just parsed (monklof)

7.4.8 1.2.0 (Apr 09, 2016)

• Drop maintained support for python 3.2.

• Remove Vagrant file in favor for repo maintained by 72squared

• Add Support for password protected cluster (etng)

• Removed assertion from code (gmolight)

• Fixed a bug where a regular connection pool was allocated with each StrictRedisCluster instance.

• Rework pfcount to now work as expected when all arguments points to same hashslot

• New code and important changes from redis-py 2.10.5 have been added to the codebase.

• Removed the need for threads inside of pipeline. We write the packed commands all nodes before reading the
responses which gives us even better performance than threads, especially as we add more nodes to the cluster.

• Allow passing in a custom connection pool

• Provide default max_connections value for ClusterConnectionPool (2**31)

• Travis now tests both redis 3.0.x and 3.2.x

• Add simple ptpdb debug script to make it easier to test the client

• Fix a bug in sdiffstore (mt3925)

• Fix a bug with scan_iter where duplicate keys would be returned during itteration

• Implement all “CLUSTER . . . ” commands as methods in the client class

• Client now follows the service side setting ‘cluster-require-full-coverage=yes/no’ (baranbartu)

• Change the pubsub implementation (PUBLISH/SUBSCRIBE commands) from using one single node to now
determine the hashslot for the channel name and use that to connect to a node in the cluster. Other clients that
do not use this pattern will not be fully compatible with this client. Known limitations is pattern subscription
that do not work properly because a pattern can’t know all the possible channel names in advance.

• Convert all docs to ReadTheDocs

• Rework connection pool logic to be more similar to redis-py. This also fixes an issue with pubsub and that
connections was never release back to the pool of available connections.

7.4.9 1.1.0 (Oct 27, 2015)

• Refactored exception handling and exception classes.

• Added READONLY mode support, scales reads using slave nodes.

32 Chapter 7. The Community Guide

redis-py-cluster Documentation, Release 1.2.0

• Fix __repr__ for ClusterConnectionPool and ClusterReadOnlyConnectionPool

• Add max_connections_per_node parameter to ClusterConnectionPool so that max_connections parameter is
calculated per-node rather than across the whole cluster.

• Improve thread safty of get_connection_by_slot and get_connection_by_node methods (iandyh)

• Improved error handling when sending commands to all nodes, e.g. info. Now the connection takes
retry_on_timeout as an option and retry once when there is a timeout. (iandyh)

• Added support for SCRIPT LOAD, SCRIPT FLUSH, SCRIPT EXISTS and EVALSHA commands. (alisaifee)

• Improve thread safety to avoid exceptions when running one client object inside multiple threads and doing
resharding of the cluster at the same time.

• Fix ASKING error handling so now it really sends ASKING to next node during a reshard operation. This
improvement was also made to pipelined commands.

• Improved thread safety in pipelined commands, along better explanation of the logic inside pipelining with code
comments.

7.4.10 1.0.0 (Jun 10, 2015)

• No change to anything just a bump to 1.0.0 because the lib is now considered stable/production ready.

7.4.11 0.3.0 (Jun 9, 2015)

• simple benchmark now uses docopt for cli parsing

• New make target to run some benchmarks ‘make benchmark’

• simple benchmark now support pipelines tests

• Renamed RedisCluster –> StrictRedisCluster

• Implement backwards compatible redis.Redis class in cluster mode. It was named RedisCluster and everyone
updating from 0.2.0 to 0.3.0 should consult docs/Upgrading.md for instructions how to change your code.

• Added comprehensive documentation regarding pipelines

• Meta retrieval commands(slots, nodes, info) for Redis Cluster. (iandyh)

7.4.12 0.2.0 (Dec 26, 2014)

• Moved pipeline code into new file.

• Code now uses a proper cluster connection pool class that handles all nodes and connections similar to how
redis-py do.

• Better support for pubsub. All clients will now talk to the same server because pubsub commands do not work
reliably if it talks to a random server in the cluster.

• Better result callbacks and node routing support. No more ugly decorators.

• Fix keyslot command when using non ascii characters.

• Add bitpos support, redis-py 2.10.2 or higher required.

• Fixed a bug where vagrant users could not build the package via shared folder.

• Better support for CLUSTERDOWN error. (Neuront)

7.4. Release Notes 33

redis-py-cluster Documentation, Release 1.2.0

• Parallel pipeline execution using threads. (72squared)

• Added vagrant support for testing and development. (72squared)

• Improve stability of client during resharding operations (72squared)

7.4.13 0.1.0 (Sep 29, 2014)

• Initial release

• First release uploaded to pypi

7.5 Project Authors

Added in the order they contributed.

If you are mentioned in this document and want your row changed for any reason, open a new PR with changes.

Lead author and maintainer: Grokzen - https://github.com/Grokzen

Authors who contributed code or testing:

• Dobrite - https://github.com/dobrite

• 72squared - https://github.com/72squared

• Neuron Teckid - https://github.com/neuront

• iandyh - https://github.com/iandyh

• mumumu - https://github.com/mumumu

• awestendorf - https://github.com/awestendorf

• Ali-Akber Saifee - https://github.com/alisaifee

• etng - https://github.com/etng

• gmolight - https://github.com/gmolight

• baranbartu - https://github.com/baranbartu

• monklof - https://github.com/monklof

• dutradda - https://github.com/dutradda

• AngusP - https://github.com/AngusP

• Doug Kent - https://github.com/dkent

• VascoVisser - https://github.com/VascoVisser

• astrohsy - https://github.com/astrohsy

• Artur Stawiarski - https://github.com/astawiarski

• Matthew Anderson - https://github.com/mc3ander

34 Chapter 7. The Community Guide

https://github.com/Grokzen
https://github.com/dobrite
https://github.com/72squared
https://github.com/neuront
https://github.com/iandyh
https://github.com/mumumu
https://github.com/awestendorf
https://github.com/alisaifee
https://github.com/etng
https://github.com/gmolight
https://github.com/baranbartu
https://github.com/monklof
https://github.com/dutradda
https://github.com/AngusP
https://github.com/dkent
https://github.com/VascoVisser
https://github.com/astrohsy
https://github.com/astawiarski
https://github.com/mc3ander

redis-py-cluster Documentation, Release 1.2.0

7.6 Licensing

Copyright (c) 2013-2018 Johan Andersson

MIT (See docs/License.txt file)

The license should be the same as redis-py (https://github.com/andymccurdy/redis-py)

7.7 Disclaimer

Both Redis cluster and redis-py-cluster is considered stable and production ready.

But this depends on what you are going to use clustering for. In the simple use cases with SET/GET and other single
key functions there is not issues. If you require multi key functinoality or pipelines then you must be very careful
when developing because they work slightly different from the normal redis server.

If you require advance features like pubsub or scripting, this lib and redis do not handle that kind of use-cases very
well. You either need to develop a custom solution yourself or use a non clustered redis server for that.

Finally, this lib itself is very stable and i know of atleast 2 companies that use this in production with high loads and
big cluster sizes.

7.6. Licensing 35

https://github.com/andymccurdy/redis-py

	Installation
	Usage example
	Dependencies & supported python versions
	Supported python versions
	Regarding duplicate pypi and python naming
	The Usage Guide
	Implemented commands
	Limitations and differences
	Pipelines
	Threaded Pipeline
	Pubsub
	Readonly mode
	Redis cluster setup
	Benchmarks

	The Community Guide
	Project status
	Testing
	Upgrading redis-py-cluster
	Release Notes
	Project Authors
	Licensing
	Disclaimer

